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Abstract

Fronthaul-Constrained Uplink Cloud Radio-Access Networks:

Capacity Analysis and Algorithm Design

Yuhan Zhou

Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

2016

This thesis considers the uplink of a cloud radio access network (C-RAN), in which base-stations (BSs)

are connected to a cloud-computing based central processor (CP) via noiseless fronthaul links with

finite capacities. The compress-and-forward strategy is employed, where the BSs compress the received

signals and send the quantized bits to the CP. Then, the CP performs either joint decoding of both the

quantization and message codewords simultaneously, or generalized successive decoding of quantization

and message codewords in an arbitrary order. Under this setup, this thesis establishes several information

theoretic results and proposes a number of practical algorithm designs.

From a theoretical perspective, this thesis first proves that under joint decoding and Gaussian in-

put, Gaussian quantization maximizes the achievable rate region. Second, it is shown that generalized

successive decoding achieves the identical rate region as joint decoding under a sum fronthaul capacity

constraint. Third, a particular successive decoding scheme, in which quantization codewords are de-

coded first followed by message codewords, referred to as the virtual multiple-access channel (VMAC)

scheme, achieves the same maximum sum rate as joint decoding under individual fronthaul constraints.

Furthermore, it is shown that under a sum fronthaul constraint, Wyner-Ziv coding, quantized at the

background noise level, can achieve the sum-capacity to within a constant gap. A similar constant-gap

result is shown for single-user compression under a diagonally dominant channel condition.

From an optimization perspective, this thesis investigates the optimization of beamforming design

and fronthaul compression for the VMAC schemes. First, under a sum fronthaul constraint, this the-

sis proposes a novel alternating convex optimization algorithm to maximize the weighted sum-rate for

single-antenna uplink C-RAN. It is shown that setting the quantization noise levels to be proportional to

the background noise levels is near optimal when the signal-to-quantization-noise-ratio is high. Second,

under individual fronthaul constraints, this thesis develops a weighted minimum mean-square-error suc-

cessive convex approximation algorithm to jointly optimize beamforming and fronthaul compression for

multi-antenna uplink C-RAN. The performances of the proposed algorithms are verified under practical

multicell and heterogeneous networks through numerical evaluation.
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Chapter 1

Introduction

The data demand in wireless communication driven by smartphones, tablets, and video streaming is

increasing dramatically. To satisfy such growing user demands, modern cellular communication systems

are moving toward densely deployed heterogenous networks consisting of base-stations (BSs) cover-

ing progressively smaller areas. Advanced techniques such as multiuser multiple-input-multiple-output

(MIMO), in which numerous antennas simultaneously serve a large number of users in the same time-

frequency resource, have been proposed in order to increase network capacity by creating more degrees

of freedom for data transmission. As a consequence, the growing inter-cell interference levels and high

deployment cost become the dominant limiting factors for the current cellular systems.

Cloud radio access network (C-RAN) refers to the virtualization of BS functionalities by means

of cloud computing, which has the potential to address the aforementioned problems. In a C-RAN

architecture, the baseband and higher layer operations of the BSs are migrated to a cloud-computing

based centralized processor (CP). By allowing coordination and joint signal processing across multiple

cells, C-RAN provides a platform for implementing network MIMO, also known as coordinated multi-

point (CoMP), which can achieve significantly higher data rates than conventional cellular networks [1].

Due to that fact that fewer baseband units are needed in C-RAN compared to the traditional distributed

cellular architecture, C-RAN also has the potential to decrease the cost of network operation, because

of the reduced power and energy consumption [2].

1.1 C-RAN Architecture

Conventional wireless communication systems are designed with a cellular architecture, in which a geo-

graphical area to be supplied with radio service is divided into non-overlapping cells. The BS deployed

in each cell provides coverage to users in that cell; mobile devices communicate with their assigned BS

within each cell. In this architecture, the BS is the direct interface between the mobile users and the

backbone wireline network, which implements all the functions of baseband and radio processing includ-

ing modulation/demodulation, encoding/decoding of user information, frequency filtering and power

amplification, etc.

In the C-RAN architecture, all the BSs are connected to a reconfigurable, general-purpose CP, as

shown in Fig. 1.1. In such a system, the BSs degenerate into remote antennas, implementing only

radio functionalities, including transmission/reception, filtering, amplification, down- and up-conversion

1
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Figure 1.1: Illustration of the uplink of a cloud radio access network.

and possibly analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC). The baseband

operations at the BSs are migrated to the software-defined CP, which operates as a virtual BS to

encode/decode user information and optimize the radio resource allocation [3]. In this scenario, subsets of

adjacent cells can form cooperating clusters. The radio resources of the BSs within one cluster can be fully

shared, thus forming a MIMO network system from the CPs perspective. The BS-CP bidirectional links

that carry the information are referred to as fronthaul links, in contrast to the backhaul links connecting

the CP to the backbone network. Fronthaul can be realized with different technologies, such as optical

fiber communication [4], microwave communication [5], or even millimetre wave communication [6].

The novel architecture of C-RAN brings a number of benefits to the current wireless communication

system: the centralized baseband processing reduces the power consumption and cost of BS operation,

and provides increased flexibility in network upgrades and adaptability to non-uniform traffic. Advanced

techniques such as network MIMO and CoMP, can be efficiently supported by C-RAN for mitigating

inter-cell interference. In contrast to the traditional cellular system, the C-RAN architecture with co-

located processing units eases network maintenance and upgrades.

The practical implementation of the C-RAN architecture restricts all the fronthaul links to have finite

capacities. For example, the typical microwave fronthaul links in use today have the average capacity less

than 100Mbps [7]. This finite-capacity constraint on the fronthaul makes both the theoretical analysis

and the practical algorithm design for the C-RAN architecture challenging. To address this problem,

this thesis studies the compress-and-forward scheme for uplink C-RAN with capacity-limited fronthaul.

Through capacity analysis and algorithm design, this thesis aims to maximize the advantages of the

C-RAN architecture by jointly optimizing the input signals at the users and the quantization at the

BSs, and consequently, to enhance the performance of cellular systems to meet the requirement of the

upcoming fifth generation (5G) wireless systems.
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1.2 Literature Survey

The uplink C-RAN model is also known in the literature as the multi-cell joint processing model, where

the CP replaces the BSs in performing encoding/decoding functionalities. The high-capacity fronthaul

links between the BSs and the central processor are used to exchange both the user data and the channel

state information (CSI). Under the C-RAN architecture, joint transmission in the downlink and joint

reception in the uplink can be performed to effectively mitigate the inter-cell interference.

From an information theoretic point of view, the uplink C-RAN model can be thought of as a two-

hop relay network between the users and the central processor, with the BSs acting as relays. The

study of limited fronthaul C-RAN model originates from the work on BS cooperation under infinite

fronthaul [8] [9], where the network capacity has been shown to grow linearly with the number of BS

antennas. This result has been extended to the case where BSs or transmitters are equipped with multiple

antennas [10], but based on the assumption that the fading coefficients of the MIMO subchannels are

completely uncorrelated. The effect of MIMO subchannel correlation on the capacity of the C-RAN

system has been studied in [11].

The main coding strategy for the uplink C-RAN model is compress-and-forward, in which the BSs

quantize their received signals, then forward the quantization codeword to the CP. In the decoding

procedure, the CP may either jointly decode the quantization codewords and the user messages, or

decode them successively, giving rise to different complexity-performance tradeoffs. The fundamental

achievability scheme for the uplink C-RAN is first proposed for the uplink model under the individual

fronthaul capacity constraint in [12–14]. In [12–14], the compress-and-forward relaying scheme and its

achievable rates are derived for the scenario where multiple users communicate with a remote destination

via multiple relays. The coding schemes of [12–14] assume joint decoding. Under the joint decoding

framework, the uplink C-RAN model can also be considered as a special case of the multi-message

multicast relay network whose entire capacity region can be achieved to within a constant gap, using

the recently proposed quantize-map-and-forward or noisy network coding schemes [15–17].

To fully explore the benefits brought by the C-RAN architecture, it is important to efficiently uti-

lize the finite-capacity fronthaul links between the BSs and CP. Substantial research works have made

progress towards this direction from different perspectives such as fronthaul compression, CSI acqui-

sition and processing, signal synchronization, and delay-aware resource allocation (See, e.g. [18] and

references therein). For the optimization of fronthaul compression in uplink C-RAN, [19, 20] consider

the optimal distributed compression strategies at the BSs with an emphasis on sum-rate maximization

and robustness, respectively. The optimal channel training time to obtain the CSI at the BSs in uplink

C-RAN with limited fronthaul is studied in [21]. The case of uplink multicell processing with imper-

fect CSI has been investigated in [22], where various relaying schemes, including decode-and-forward

and compress-and-forward techniques, are compared under the assumption that there might be errors

in channel estimation. To efficiently deliver CSI information to the central receiver, [23] proposes a

compress-forward-estimate approach which jointly designs the fronthaul and CSI compression. Further-

more, if the CSI is only available at the CP side, the performance of compress-and-forward is evaluated

for a two-user C-RAN model under limited individual fronthaul in [24]. The complexity of the CSI

processing in C-RAN can be significantly reduced by utilizing the sparsity of the channel matrix [25].

The signal sparsity in C-RAN can also used to improve the performance of the fronthaul compression

and user detection [26]. Additionally, by introducing the delay-optimal fronthaul allocation, the latency

issue in the C-RAN design can be efficiently controlled [27]. The fronthaul compression can also be
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Figure 1.2: Illustration of a uplink cloud radio-access network with capacity-limited fronthaul.

designed for enhancing the performance of the synchronization in C-RAN [28].

Finally, we mention a completely different class of coding strategies called “compute-and-forward”,

in which the relaying BSs forward a function of the transmitted signals from the mobile subscribers to

the CP. Under the assumption that the CSI is only available at the CP side, [29] demonstrated that a

lattice-code-based relaying scheme can outperform the conventional decode-and-forward and compress-

and-forward schemes in a certain signal-to-interference-and-noise-ratio (SINR) regime, for a symmetric

Wyner model under a specific fronthaul constraint where each fronthaul link has the same capacity. This

scheme is further applied to the C-RAN model with equal-capacity fronthaul links in [30], where it is

shown that as compared with the compress-and-forward scheme, it achieves competitive performance but

with significantly lower complexity. However, the construction of lattice codes for compute-and-forward

is a nontrivial problem. Additionally, compute-and-forward can be very sensitive to channel estimation

errors [31]. A sophisticated code design could potentially address this issue at the cost of high decoding

complexity [32].

1.3 Overview of Thesis

This thesis focuses on the fundamental limits and system-level optimization of uplink C-RAN under

practical finite-capacity fronthaul constraints. The channel model of the uplink C-RAN architecture is

shown in Fig. 1.2, in which multiple distributed transmitters send information to a centralized receiver

through a multi-access relay network. The main objective of this thesis is to optimize the input signaling

at the transmitter, the quantization design at the relaying nodes, and the decoding strategy at the CP

for maximizing the network utility.

As a first step toward practical implementation of C-RAN, we need to characterize the maximum

achievable rate region of uplink C-RAN. Under the compress-and-forward scheme, the best known achiev-

able region for uplink C-RAN is given by joint decoding of quantization codewords and user messages [13].

It is worth noting that this achievability scheme can be thought of as a particular instance of the noisy

network coding scheme [15–17, 33] applied to a multi-message multicast relay network. Noisy network

coding achieves the capacity region of the Gaussian multicast relay networks to within a constant gap.

Consequently, the compress-and-forward scheme with joint decoding is also shown to achieve the ca-
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pacity region of the uplink C-RAN model to within a constant gap [34]. However, joint decoding is

challenging to implement: the computational complexity of joint decoding scales exponentially with the

total number of nodes in the network. Moreover, even a mere evaluation of the achievable rate could

be computationally prohibitive. Under joint decoding, the achievable rate region for the uplink C-RAN

model shown in Fig. 1.2 involves 2K − 1 constraints, each of which is a minimization over 2L terms,

where K and L are the number of users and relay nodes in the network, respectively. To overcome the

above difficulty yet still take full advantage of the centralized processor is quite challenging.

When realistic design is considered for implementing the uplink C-RAN, a more practical successive

decoding scheme [12, Theorem 1] could be adopted, in which the BSs perform Wyner-Ziv coding to

compress the received signals and send the quantization bits to the CP; the CP decodes the quantization

codes first, and then the user messages sequentially. The optimal quantization strategy and optimal

decoding strategy for compress-and-forward in uplink C-RAN is the focus of Chapter 2 of this thesis. In

Chapter 2, the compress-and-forward scheme is investigated, in which the BSs performWyner-Ziv coding

to compress and send the received signals to the CP; the CP performs either joint decoding of both the

quantization codewords and the user messages simultaneously, or successive decoding of the quantization

and user message codewords according to a specific order that maximizes the network utility. Under

this setup, this chapter makes progress toward the optimization of the fronthaul compression scheme

by proving the following two results. First, it characterizes the rate region of generalized successive

decoding which allows arbitrary decoding orders of the quantization and user message codewords, and

shows that under a sum fronthaul capacity constraint, generalized successive decoding achieves the same

rate region as joint decoding. It is also shown that the practical successive decoding which decodes the

quantization codes first, and then the user messages, achieves the same performance as joint decoding

for maximizing the sum rate of uplink C-RAN. Second, it is shown that if the input distributions are

assumed to be Gaussian, then under joint decoding, the optimal quantization scheme for maximizing

the achievable rate region is Gaussian.

For the implementation of the compress-and-forward strategy in C-RAN, it is important to choose

appropriate quantization noise levels, such that the network utility can be maximized. Chapter 3 studies

such optimization problems for uplink single-input-single-output (SISO) C-RAN. The compress-and-

forward scheme with successive decoding is employed, in which the single-antenna BSs quantize the

received signals and send the compressed bits to the CP using either distributed Wyner-Ziv coding or

single-user compression. The CP decodes the quantization codewords first, and then decodes the user

messages as if the remote users and the cloud center form a virtual multiple-access channel (VMAC).

Chapter 3 formulates the problem of optimizing the quantization noise levels for the weighted sum

rate maximization under a sum fronthaul capacity constraint. A novel alternating convex optimization

approach is proposed to find a local optimum solution to the optimization problem. More importantly, it

is established that setting the quantization noise levels to be proportional to the background noise levels is

near optimal for sum-rate maximization, when the signal-to-quantization-noise ratio (SQNR) is high. In

addition, with Wyner-Ziv coding, the approximately optimal quantization noise level is shown to achieve

the sum-capacity of the uplink C-RAN model to within a constant gap. With single-user compression,

a similar constant-gap result is obtained under a diagonal dominant channel condition. These results

lead to an efficient algorithm for allocating the fronthaul capacities in C-RAN. The performance of

the proposed scheme is evaluated for practical multicell and heterogeneous networks. It is shown that

multicell processing with optimized quantization noise levels across the BSs can significantly improve
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Table 1.1: Summary of the Proposed Algorithms

ACO Approx. opt. WMMSE-SCA Separate
scheme quantization noise level scheme design

Uplink C-RAN system SISO SISO MIMO MIMO
Fronthaul compression Optimized Approx. opt. Jointly optimized Approx. opt.

Transmit signal Fixed Fixed Jointly optimized Approx. opt.
Performance High Low High Low
Complexity High Low High Low

the performance of wireless cellular networks.

As an extension of Chapter 3 to the multi-antenna case, Chapter 4 investigates the fronthaul com-

pression and transmit beamforming design for uplink MIMO C-RAN. A practical compress-and-forward

scheme is employed, in which the CP performs successive decoding with either successive interference

cancellation (SIC) receiver or linear minimum-mean-square-error (MMSE) receiver. Since conventional

transmit beamforming strategies are designed not to be fronthaul-aware, they are not necessarily suit-

able for the multi-cell processing feature of the C-RAN architecture. Chapter 4 proposes a joint design

of the transmit beamformers at the users and the quantization noise covariance matrices at the BSs

for maximizing the network utility. A novel weighted minimum-mean-square-error successive convex

approximation (WMMSE-SCA) algorithm is proposed for maximizing the weighted sum rate under the

user transmit power and fronthaul capacity constraints with single-user compression first. Assuming

a heuristic decompression ordering strategy, the proposed algorithm is then adapted for optimizing

the transmit beamforming and fronthaul compression under distributed Wyner-Ziv coding. In addition,

Chapter 4 also proposes a low-complexity separate design consisting of optimizing transmit beamformers

for the Gaussian vector multiple-access channel along with per-antenna scalar quantizers with uniform

quantization noise levels across the antennas at each BS. Numerical results show that the majority of

the performance gain stems from the implementation of SIC at the CP. Furthermore, the low complex-

ity separate design performs very close to the optimized joint design in the SQNR regime of practical

interest.

Chapter 3 and Chapter 4 in the thesis propose four algorithms and their variants under the different

scenarios. The proposed algorithms are the ACO scheme and the approximately optimal quantization

noise level for optimizing the fronthaul compression with fixed transmit signal and under a sum fronthaul

constraint, the WMMSE-SCA scheme and the separate design for jointly optimizing the beamforming

and compression under individual fronthaul constraints. The differences between the above four al-

gorithms are illustrated in Table 1.1. The ACO scheme vs. the approximately optimal quantizer (or

the WMMSE-SCA scheme vs. the separate design) demonstrate the tradeoff between performance and

complexity in uplink C-RAN design. In this sense, the above algorithms offer a great degree of flexibility

in implementing uplink C-RAN under various design criterion.

The publications related to this thesis are as follows. Chapter 2 is joint work with Jun Chen (McMas-

ter University, Canada) and Yinfei Xu (Southeast University, China), which is presented in part in [35];

Chapter 3 is presented in part in [36] and [37], respectively, and a complete version of Chapter 3 can be

found in [38]; Chapter 4 is published in part in [39], and a complete version of Chapter 4 forms [40].
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1.4 Notations

Notation: Boldface letters denote vectors or matrices, where context should make the distinction clear.

Superscripts (·)† and (·)−1 denote Hermitian transpose and matrix inverse operators; E[·] and Tr(·)
denote expectation and matrix trace operators; cov(·) denotes the covariance operation; co(·) denotes

the convex closure operation. We use Xj
i = (Xi,Xi+1, . . . ,Xj) to denote a matrix with (j − i + 1)

columns for 1 ≤ i ≤ j. For a vector/matrix X, XS denotes a vector/matrix with elements whose indices

are elements of S. Given matrices {X1, . . . ,XL}, diag
(
{X�}L�=1

)
denotes the block diagonal matrix

formed with X� on the diagonal. Denote by J(X) the Fisher information matrix of the random vector

X. R+ is used to denote non-negative real numbers. We let K = {1, · · · ,K} and L = {1, · · · , L}.
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Chapter 2

On the Optimal Compression and

Decoding for Uplink C-RAN

2.1 Introduction

This chapter studies the information theoretic limit of uplink C-RAN under finite-capacity fronthaul

constraints. The uplink C-RAN model shown in Fig. 1.2 is re-plotted here in Fig. 2.1 for the convenience

of readers, which consists of multiple remote users sending independent messages to the CP through

multiple BSs serving as relay nodes. Both the user terminals and the BSs are equipped with multiple

antennas. The BSs and the CP are connected via noiseless fronthaul links with finite capacity. This

channel model can be thought of as a two-hop relay network, with an interference channel between the

users and the BSs, followed by a noiseless multiple-access channel between the BSs and the CP. This

chapter assumes that the compress-and-forward relaying strategy is employed, in which the relaying BSs

compress the received signals and forward the quantization bits to the CP through fronthaul links, and

all the user messages are eventually decoded at the CP.

A key question in the design of compress-and-forward strategy in uplink C-RAN is the optimal input

coding strategy at the user terminals, the optimal relaying strategy at the BSs, and the optimal decoding

strategy at the CP. Toward this end, this chapter restricts attention to the strategy of compressing

the received signals at the BSs, then either joint decoding of the quantization and message codewords

simultaneously, or generalized successive decoding of the quantization and message codewords in some

arbitrary order at the CP. Under this assumption, this chapter makes the following contributions toward

revealing the structure of the optimal compress-and-forward strategy.

First, motivated by the fact that successive decoding is much easier to implement than joint decoding,

we seek to understand whether successive decoding at the CP can perform as well as joint decoding.

Toward this end, this chapter shows that the two schemes indeed achieve the same rate region for an

uplink C-RAN model under a sum fronthaul constraint. Further, although not necessarily so for the

general rate region, if one focuses on maximizing the sum rate, the strategy of successively decoding the

quantization codewords first, then the user messages, achieves the optimal sum rate.

Second, we seek to understand the optimal input distribution and quantization schemes in uplink C-

RAN. Although it is well known that joint Gaussian strategies are not necessarily optimal, this chapter

shows that if we fix the input distribution to be Gaussian, then the optimal quantization scheme is

8
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Figure 2.1: The uplink C-RAN model under finite-capacity fronthaul constraints

Gaussian under joint decoding, and vice versa. Moreover, joint Gaussian signaling can be shown to

achieve the capacity region of the Gaussian multiple-input multiple-output (MIMO) uplink C-RAN

model to within a constant gap. Finally, this chapter makes progress on the computational front by

showing that under the joint Gaussian assumption, the optimization of the quantization covariance

matrices for maximizing the sum rate can be formulated as a convex optimization problem. These

results suggest that joint Gaussian input signaling and Gaussian quantization is a reasonable strategy

for the practical implementation of uplink C-RAN.

2.1.1 Related Work

The achievable rate region of compress-and-forward with joint decoding for the uplink C-RAN model was

first characterized in [13] for a single-transmitter model then in [14] for the multi-transmitter case. How-

ever, the number of rate constraints in the joint decoding rate region grows exponentially with the size

of the network [13, Proposition IV.1], which makes the evaluation of the achievable rate computationally

prohibitive. The achievable rate region of the compress-and-forward strategy with practical successive de-

coding, in which the quantization codewords are decoded first, then the user messages are decoded based

on the recovered quantization codewords, has also been studied for the uplink C-RAN model [12, The-

orem 1]. One of the objectives of this chapter is to illustrate the relationship between joint decoding

and successive decoding. In the existing literature, the equivalence between these two decoding schemes

is first demonstrated for single-source, single-destination, and single-relay networks [41, Appendix 16C],

then shown for single-source, single-destination, and multiple-relay networks [42], under either block-by-

block forward decoding or block-by-block backward decoding. This chapter further demonstrates that

in the case of uplink C-RAN, which is a multiple-source, single-destination, multiple-relay network, the

optimality of successive decoding still holds under suitable conditions.

In general, it is challenging to find the optimal joint input and quantization noise distributions that

maximize the achievable rate of the compress-and-forward scheme for uplink C-RAN. Gaussian signaling

is not necessarily optimal—in particular, in a simple example of uplink C-RAN with one user and two

BSs shown in [12], binary input is shown to outperform Gaussian input. However, Gaussian input

and Gaussian quantization can be shown to be approximately optimal. In fact, the uplink C-RAN

model is an example of a general Gaussian relay network with multiple sources and a single destination



www.manaraa.com

Chapter 2. On the Optimal Compression and Decoding for Uplink C-RAN 10

for which a generalization of compress-and-forward with joint decoding (referred to as noisy network

coding scheme [15–17,33]) and with Gaussian input and Gaussian quantization can be shown to achieve

to within a constant gap to the information theoretical capacity of the overall network. Instead of

using noisy network coding, our previous work [38] shows that successive decoding can achieve the sum

capacity of uplink C-RAN to within constant gap, if the fronthaul links are subjected to a sum capacity

constraint. In this work, we further demonstrate that the compress-and-forward scheme with joint

decoding can achieve to within a constant gap to the entire capacity region of the uplink C-RAN model

with individual fronthaul constraints; same is true for successive decoding under suitable condition.

An important theoretical result obtained in this chapter is that if the input distributions of the uplink

C-RAN model are fixed to be Gaussian, then Gaussian quantizer is in fact optimal under joint decoding.

Finding the optimal quantization for the C-RAN model is related to the mutual information constraint

problem [43], for which entropy power inequality is used to show that Gaussian quantization is optimal for

a three-node relay network with Gaussian input. However, it is challenging to extend this approach to the

uplink C-RAN model, which has multiple sources. This chapter provides a novel proof of the optimality

of Gaussian quantization based on the de Bruijn identity and the Fisher information inequality. A key

insight here is a connection between the C-RAN model and the CEO problem in source coding [44],

where a source is described to a central unit by remote agents with noisy observations. The solution to

the CEO problem is known for the scalar Gaussian case [45], while significant recent progress has been

made in the vector case, e.g., [46]. In this chapter, we use techniques for establishing the outer bound

for the Gaussian vector CEO problem [47] to prove the optimality of Gaussian quantization. We also

remark the connection between this quantization optimization problem and the information bottleneck

method [48], for which joint Gaussian distribution is shown to be Pareto optimal. The technique used

in this chapter is a significantly simpler alternative to the enhancement technique given in [49, 50].

This chapter also makes progress in observing that the optimization of Gaussian quantization noise

covariance matrices for maximizing the (weighted) sum rate of uplink C-RAN can be reformulated as a

convex optimization problem. The quantization noise covariance optimization problem has been consid-

ered in the literature, but only locally convergent algorithms are known previously [19, 20]. The convex

formulation proposed in this chapter allows globally optimal Gaussian quantization noise covariance

matrices to be found efficiently. In this chapter, the optimization of the quantization noise covariance

matrix is performed under the fixed Gaussian input. The joint optimization of the input signal and

quantization noise covariance matrices remains a computationally challenging difficult problem [40].

2.1.2 Main Contributions

This chapter establishes several information theoretic results on the uplink MIMO C-RAN model with

finite-capacity fronthaul links. A summary of our main contributions is as follows:

• This chapter demonstrates that generalized successive decoding for compress-and-forward, which

allows the decoding of the quantization and user message codewords in an arbitrary order, can

achieve the same rate region as joint decoding under a sum fronthaul capacity constraint. Further,

successive decoding of the quantization codewords first, then the user message codewords, can

achieve the same maximum sum rate as joint decoding under individual fronthaul constraints;

• This chapter shows that Gaussian input and Gaussian quantization achieve to within a constant

gap of the capacity region of the uplink MIMO C-RAN model under joint decoding. Combining
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with the result above, the same constant gap result also holds for generalized successive decoding

under a sum fronthaul constraint and for successive decoding for sum rate maximization;

• This chapter shows that under fixed Gaussian input, Gaussian quantization maximizes the achiev-

able rate region under joint decoding. Combining with the optimality result for successive decoding,

this also implies that under fixed Gaussian input, Gaussian quantization is optimal for generalized

successive decoding under a sum fronthaul constraint, and for successive decoding for sum rate

maximization;

• Under joint Gaussian signaling and Gaussian quantization, the optimization of quantization noise

covariance matrices for maximizing weighted sum rate under joint decoding and for maximizing

sum rate under practical successive decoding can be formulated as convex optimization problems,

which facilitate their efficient solution.

2.1.3 Chapter Organization

The rest of the chapter is organized as follows. Section 2.2 introduces the channel model for the uplink

MIMO C-RAN and characterizes the achievable rate regions for compress-and-forward schemes with

joint decoding and generalized successive decoding respectively. Section 2.3 demonstrates the rate-

region optimality of generalized successive decoding under a sum fronthaul constraint and the sum-

rate optimality of successive decoding. Section 2.4 focuses on establishing the optimality of Gaussian

quantizers with joint decoding under Gaussian input. In addition, Section 2.4 also establishes the

approximate capacity of the uplink MIMO C-RAN model to within constant gap, and shows the convex

formulation of the (weighted) sum rate maximization problems over the quantization noise covariance

matrices. Section 2.5 concludes the chapter.

2.2 Achievable Rate Regions for Uplink C-RAN

2.2.1 Channel Model

This chapter considers an uplink C-RAN model, where K mobile users communicate with a CP through

L BSs, as shown in Fig. 2.1. The noiseless digital fronthaul link connecting the BS � to the CP has

the capacity of C� bits per complex dimension. The fronthaul capacity C� is the maximum long-term

average throughput of the �th fronthaul link, i.e., lim
n→∞

1
n

∑n
i=1 C�(i) ≤ C�, where C�(i) represents the

instantaneous transmission rate of the �th fronthaul link at the ith time slot. Each user terminal is

equipped with M antennas; each BS is equipped with N antennas. Perfect channel state information

(CSI) is assumed to be available to all the BSs and to the CP.

Let Xk ∈ C
M be the signal transmitted by the kth user, which is subject to per-user transmit power

constraint of Pk, i.e. E
[
XkX

†
k

]
≤ Pk. The signal received at the �th BS can be expressed as

Y� =

K∑
k=1

H�,kXk + Z�, � = 1, 2, . . . , L, (2.1)

where Z� ∼ CN (0,Σ�) represents the additive Gaussian noise for BS � and is independent across different

BSs, and H�,k denotes the complex channel matrix from user k to BS �.
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We consider the compress-and-forward scheme [51,52] applied to the uplink C-RAN system, in which

the BSs compress the received signals Y�, and forward the quantization bits to the CP for decoding. At

the CP, the user messages are decoded using either joint decoding or some form of successive decoding.

In joint decoding, the quantization codewords and the message codewords are decoded simultaneously,

whereas, in a form of successive decoding, the quantization codewords and message codewords are

decoded successively in some arbitrary order. Different orderings can potentially result in different

achievable rates.

2.2.2 Achievable Rates for Joint Decoding, Successive Decoding, and Gen-

eralized Successive Decoding

In the following, we present the achievable rate region of compress-and-forward with joint decoding and

different forms of successive decoding.

Proposition 2.1 ( [13, Proposition IV.1]) For the uplink C-RAN model shown in Fig. 2.1, the achievable

rate-fronthaul region of compress-and-forward with joint decoding, P∗
JD, is the closure of the convex hull

of all (R1, · · · , RK , C1, . . . , CL) ∈ R
K+L
+ satisfying∑

k∈T
Rk <

∑
�∈S

[
C� − I

(
Y�; Ŷ�|XK

)]
+ I

(
XT ; ŶSc |XT c

)
(2.2)

for all T ⊆ K and S ⊆ L, for some product distribution
∏K

k=1 p(xk)
∏L

�=1 p(ŷ�|y�).

Note that for the uplink C-RAN model, the rate region (2.2) given by compress-and-forwardwith joint

decoding is identical to the rate region of the noisy network coding scheme [16], which is an extension of

the compress-and-forward scheme to the general multiple access relay network by using joint decoding

at the receiver and block Markov coding at the transmitters.

As a more practical decoding strategy, successive decoding of quantization codewords first, and then

the user messages at the CP can also be used in uplink C-RAN. The following proposition states the

rate-fronthaul region achieved by successive decoding.

Proposition 2.2 ( [12, Theorem 1]) For the uplink C-RAN model shown in Fig. 2.1, the achievable

rate-fronthaul region of compress-and-forward with successive decoding, P∗
SD, is the closure of the convex

hull of all (R1, · · · , RK , C1, . . . , CL) ∈ R
K+L
+ satisfying∑

k∈T
Rk < I

(
XT ; ŶL|XT c

)
, ∀ T ⊆ K, (2.3)

and

I
(
YS ; ŶS |ŶSc

)
<

∑
�∈S

C�, ∀ S ⊆ L. (2.4)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�).

Note that (2.3) is the multiple-access rate region, (2.4) represents the Wyner-Ziv decoding constraint,

while (2.2) incorporates the joint decoding of the quantization codewords and the user messages. Because

of its lower decoding complexity, successive decoding is usually preferred for practical implementation

of the uplink C-RAN systems [19, 20].
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It is possible to improve upon the successive decoding scheme by allowing arbitrary interleaved de-

coding orders between quantization codewords and user message codewords. We call this the generalized

successive decoding scheme in this chapter. The generalized successive decoding scheme is first suggested

in [34] under the name of joint base-station successive interference cancelation scheme. In such a succes-

sive decoding strategy, the set of potential decoding orders includes all the permutations of quantization

and user message codewords. Denote π as a permutation on the set of quantization and user message

codewords
(
Ŷ1, Ŷ2, . . . , ŶL,X1,X2, . . .XK

)
. For a given permutation π, the decoding order is given

by the index of the elements in π, i.e. π(1) → π(2) → · · · → π(L + K). For example, consider an

uplink C-RAN model as shown in Fig. 2.1 with 2 BSs and 2 users. If π =
(
Ŷ1,X1, Ŷ2,X2

)
, then the

decoding of Ŷ2 and X2 can use both previously decoded user messages and quantization codewords as

side information. The resulting rate region is characterized as⎧⎨⎩ R1 < I
(
X1; Ŷ1

)
,

R2 < I
(
X2; Ŷ1, Ŷ2|X1

)
,

(2.5)

for some product distribution p(x1)p(x2)p(ŷ1|y1)p(ŷ2|y2) that satisfies⎧⎨⎩ C1 > I
(
Y1; Ŷ1

)
,

C2 > I
(
Y2; Ŷ2|Ŷ1,X1

)
.

(2.6)

Let IXk
, IY�

denote the indices of user messages that are decoded before Xk and Y� under the per-

mutation π, respectively. Likewise, let JXk
, JY�

denote the indices of quantization codewords that

are decoded before Xk and Y� under the permutation π, respectively. The rate-fronthaul region of

generalized successive decoding for uplink C-RAN is stated in the following proposition.

Proposition 2.3 For the uplink C-RAN model shown in Fig. 2.1, the achievable rate-fronthaul region

of generalized successive decoding with decoding order π, PGSD(π), is the closure of the convex hull of

all (R1, · · · , RK , C1, . . . , CL) ∈ R
K+L
+ satisfying

Rk < I
(
Xk; ŶJXk

|XIXk

)
, ∀ k ∈ K, (2.7)

and

C� > I
(
Y�; Ŷ�|ŶJY�

,XIY�

)
, ∀ � ∈ L. (2.8)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�). Define the generalized successive decoding re-

gion P∗
GSD to be the closure of the convex hull of the union of regions PGSD(π) over all possible permu-

tation π’s, i.e.

P∗
GSD = co

(⋃
π

PGSD(π)

)
. (2.9)

2.3 Optimality of Successive Decoding

In general, we have P∗
SD ⊆ P∗

GSD ⊆ P∗
JD. However, successive decoding is more desirable than joint

decoding, not only because of its lower complexity, but also due to the fact that its rate region can be more

easily evaluated. Thus, there is a tradeoff between complexity and performance in designing decoding
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strategies for uplink C-RAN. To further understand this tradeoff, this section establishes that: 1) By

allowing arbitrary decoding orders of quantization and message codewords, the generalized successive

decoding actually achieves the same rate region as joint decoding under a sum fronthaul constraint; 2)

The practical successive decoding strategy in which the BSs decode the quantization codewords first,

then the user messages, actually achieves the same maximum sum rate as joint decoding under individual

fronthaul constraints.

2.3.1 Optimality of Generalized Successive Decoding under a Sum Fronthaul

Constraint

This section shows that in the special case where the fronthaul links are subject to a sum capacity

constraint, generalized successive decoding achieves the rate region as joint decoding. In this model, the

fronthaul capacities are constrained by
∑L

�=1 C� ≤ C and C� ≥ 0, as has been considered in [19, 38].

The sum fronthaul capacity constraint considered here is particularly suited to model the scenario where

the fronthaul is implemented in a wireless shared medium. For example, as shown in Fig. 2.2, when

the wireless fronthaul links are implemented using an orthogonal access scheme such as time/frequency

division multiple access (TDMA or FDMA), and the total number of time/frequency slots that can

be utilized by different access points can be shared, the sum-capacity constraint captures the essential

feature of the fronthaul constraints.

Central 
Processor

Figure 2.2: An illustration of wireless fronthaul links using TDMA/FDMA with power density constraint.

Under the sum fronthaul capacity constraint C, the rate regions achieved by with joint decoding

R∗
JD,s is defined as

R∗
JD,s =

{
(R1, . . . , RK) : (R1, · · · , RK , C1, . . . , CL) ∈ P∗

JD,

L∑
�=1

C� ≤ C, C� ≥ 0

}
(2.10)

Likewise, the rate region achieved with generalized successive decoding R∗
GSD,s is given by

R∗
GSD,s =

{
(R1, . . . , RK) : (R1, · · · , RK , C1, . . . , CL) ∈ P∗

GSD,

L∑
�=1

C� ≤ C, C� ≥ 0

}
(2.11)

The following theorem states the main result of this section.
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Theorem 2.1 For the uplink C-RAN model with the sum fronthaul capacity constraint
∑L

�=1 C� ≤ C

and C� ≥ 0, the rate region achieved by generalized successive decoding and joint coding are identical,

i.e., R∗
GSD,s = R∗

JD,s.

Proof. See Appendix A.

The roadmap for the proof of Theorem 2.1 shares the same idea as the characterization of the

rate distortion region for the CEO problem under logarithmic loss [53] and the rate distortion re-

gion for the multiple-access channel [54], which uses the properties of submodular polyhedron (see

Appendix B). Specifically, in order to show R∗
GSD,s = R∗

JD,s, we show that under fixed product dis-

tribution
∏K

k=1 p(xk)
∏L

�=1 p(ŷ�|y�), every extreme point of the polyhedron (R∗
JD,s, C) is dominated by

the points in the polyhedron defined by (R∗
GSD,s, C). We conjecture that Theorem 2.1 holds also for the

case of individual fronthaul capacity constraints. However, in that case, finding the dominant faces of

polyhedron (R∗
JD,s, C) becomes much more difficult, it appears non-trivial to extend the current proof

to the case of individual fronthaul constraints.

2.3.2 Optimality of Successive Decoding for Maximizing Sum Rate

As a special instance of generalized successive decoding, successive decoding reconstructs quantization

codewords first, then user message codewords in a sequential order. In what follows, we show that the

optimal sum rate achieved by this special successive decoding is the same as that achieved by joint

decoding.

Under fixed input distribution and fixed fronthaul capacities C�, for � = 1, . . . , L, the sum rate

achieved by joint decoding R∗
JD,SUM is defined as

R∗
JD,SUM =

⎧⎪⎨⎪⎩ max
K∑

k=1

Rk

s.t. (R1, · · · , RK , C1, . . . , CL) ∈ P∗
JD.

(2.12)

Likewise, the sum rate for successive decoding RSD,SUM is given by

R∗
SD,SUM =

⎧⎪⎨⎪⎩ max
K∑

k=1

Rk

s.t. (R1, · · · , RK , C1, . . . , CL) ∈ P∗
SD.

(2.13)

The following theorem demonstrates the optimality of successive decoding for maximizing uplink C-RAN

under individual fronthaul constraints.

Theorem 2.2 For the uplink C-RAN model with fronthaul capacities C� shown in Fig. 2.1, the maximum

sum rates achieved by successive decoding and joint decoding are the same, i.e., R∗
SD,SUM = R∗

JD,SUM .

Proof. See Appendix C.

We remark that Theorem 2.2 can be thought as a generalization of a result in [42] that shows that

under block-by-block forward decoding, the compress-and-forward scheme with compression-message

successive decoding achieves the same maximum rate as that with compression-message joint decoding

for a single-source, single-destination relay network. The uplink C-RAN is a multiple-source, single-

destination relay network. If all the user terminals are regarded as one super transmitter, then it follows
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from [42] that successive decoding and joint decoding achieves the same maximum sum rate. However,

the proof in [42] is quite complicated. In this chapter, we provide an alternative proof technique for

showing the optimality of successive decoding for sum rate maximization in uplink C-RAN. The new

proof utilizes the properties of submodular optimization, which is simpler than the proof provided in [42].

The proofs of Theorem 2.2 and Theorem 2.1 illustrate the usefulness of submodular optimization in

establishing this type of results.

It is remarked that successive decoding and joint decoding achieve the same sum rate, but do not

achieve the same rate region. The achievable rate region of generalized successive decoding is in general

larger than that of successive decoding. For example, consider the compress-and-forward scheme for

maximizing the rate of user 1, R1, only. The optimal decoding order should be XK\{1} → ŶL → X1.

With this decoding order, user 1 can achieve larger rate than using the decoding order of ŶL → XK,

because the decoded user messages X2,X3, . . . ,XK can serve as side information for the decoding of

ŶL. In general, to maximize a weighted sum rate, one needs to maximize over (L +K)! orderings for

generalized successive decoding. The main result of this section shows however that for maximizing the

sum rate in uplink C-RAN, successive decoding of the quantization codewords first, and then the user

messages is optimal; this reduces the search space considerably.

2.4 Uplink C-RAN with Gaussian Input and Gaussian Quanti-

zation

In this section, we specialize to the compress-and-forward scheme for uplink C-RAN with Gaussian input

signal at the users and Gaussian quantization at the BSs. Although it is known that joint Gaussian

distribution is suboptimal for uplink C-RAN [12], Gaussian input is desirable, because it leads to achiev-

able rate regions that can be easily evaluated. In the following section, it is shown that with Gaussian

input and Gaussian quantization, compress-and-forward with joint decoding can achieve the capacity

region of uplink C-RAN to within a constant gap, which is independent of the channel gain matrix and

the SNR in the network. We further establish the optimality of Gaussian compression at the relaying

BSs for joint decoding, if the input is Gaussian. These results can be further extended to generalized

successive decoding under a sum fronthaul constraint and successive decoding for the maximum sum

rate. Additionally, under Gaussian signaling, the optimization of quantization noise covariance matrices

for weighted sum-rate maximization under joint decoding and for sum rate maximization under practi-

cal successive decoding can be cast as convex optimization problems, thereby facilitating their efficient

numerical solution. Throughout this section, we focus on the achievable rates under the fixed Gaussian

input, and the fixed fronthaul capacity constraints C� for � = 1, . . . , L.

2.4.1 Achievable Rate Regions under Gaussian Input and Gaussian Quanti-

zation

We let the input distribution to be Gaussian, i.e., Xk ∼ CN (0,Kk), then evaluate the rate regions for the

compress-and-forward scheme with joint decoding and successive decoding under Gaussian quantization,

denoted as RG
JD,GIn and RG

SD,GIn, respectively. Set
∏L

�=1 p(ŷ�|y�) ∼ CN (y�,Q�), where Q� is the

Gaussian quantization noise covariance matrix at the �th BS.
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With Gaussian input and Gaussian quantization, we have

I(Y�; Ŷ�|XK) = log
|Σ� +Q�|
|Q�|

(2.14)

and

I
(
XT ; ŶSc |XT c

)
= log

∣∣∣HSc,T KT H
†
Sc,T + diag ({Σ� +Q�}�∈Sc)

∣∣∣
|diag ({Σ� +Q�}�∈Sc)| . (2.15)

The achievable rate region (2.2) for joint decoding can be evaluated as

∑
k∈T

Rk <
∑
�∈S

[
C� − log

|Σ� +Q�|
|Q�|

]
+ log

∣∣∣HSc,T KT H
†
Sc,T + diag ({Σ� +Q�}�∈Sc)

∣∣∣
|diag ({Σ� +Q�}�∈Sc)| , (2.16)

for all T ⊆ K and S ⊆ L.

Likewise the achievable rate expression (2.3) for successive decoding becomes

∑
k∈T

Rk < log

∣∣∣HSc,KKKH
†
L,K + diag ({Σ� +Q�}�∈L)

∣∣∣
|diag ({Σ� +Q�}�∈L)|

, ∀ T ⊆ K. (2.17)

And the fronthaul constraint (2.4) is evaluated as

I
(
YS ; ŶS |ŶSc

)
(a)
= I

(
XK; ŶS |ŶSc

)
+

∑
�∈S

I(Y�; Ŷ�|XK)

(b)
= I

(
XK; ŶL

)
− I

(
XK; ŶSc

)
+

∑
�∈S

I(Y�; Ŷ�|XK)

= log

∣∣∣HL,KKKH
†
L,K + diag ({Σ� +Q�}�∈L)

∣∣∣∣∣∣HSc,KKKH
†
Sc,K + diag ({Σ� +Q�}�∈Sc)

∣∣∣ −
∑
�∈S

log |Q�| ≤
∑
�∈S

C�,

for all S ⊆ L, where equalities (a) and (b) follow from the fact that

I
(
XK; ŶS |ŶSc

)
+ I

(
YS ; ŶS |XKŶSc

)
= I

(
YS ; ŶS |ŶSc

)
+ I

(
XK; ŶS |YSŶSc

)
,

and the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Yj ↔ Ŷj , ∀ i �= j.

Instead of parameterizing the rate expressions over Q� as in above, in this section, we introduce the

following reparameterization, which is crucial for proving our main results. Define

B� = (Σ� +Q�)
−1 . (2.18)

We represent the rate regions of joint decoding and successive decoding in terms of B� in the following.

Proposition 2.4 For the uplink C-RAN model shown in Fig. 2.1 and under fixed Gaussian input XK ∼
CN (0,KK) with KK = diag ({Kk}k∈K). The rate-fronthaul region for joint decoding under Gaussian
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quantization, PG
JD,GIn, is the closure of the convex hull of all (R1, · · · , RK , C1, . . . , CL) satisfying

∑
k∈T

Rk <
∑
�∈S

[
C� − log

|Σ−1
� |

|Σ−1
� −B�|

]
+ log

∣∣∣∑�∈Sc H
†
�,T B�H�,T +K−1

T

∣∣∣∣∣K−1
T

∣∣ (2.19)

for all T ⊆ K and S ⊆ L, for some 0 � B� � Σ−1
� , where KT = E

[
XT X

†
T

]
is the covariance matrix

of XT , and H�,T denotes the channel matrix from XT to Y�. Furthermore, under the fixed fronthaul

capacity constraints C� for � = 1, . . . , L, the rate regions achieved by with joint decoding RG
JD,GIn is

defined as

RG
JD,GIn =

{
(R1, . . . , RK) : (R1, · · · , RK , C1, . . . , CL) ∈ PG

JD,GIn

}
(2.20)

Proposition 2.5 For the uplink C-RAN model shown in Fig. 2.1 and under fixed Gaussian input XK ∼
CN (0,KK) with KK = diag ({Kk}k∈K). The rate-fronthaul region for successive decoding, PG

SD,GIn, is

the closure of the convex hull of all (R1, · · · , RK , C1, . . . , CL) satisfying

∑
k∈T

Rk < log

∣∣∣∑L
�=1 H

†
�,T B�H�,T +K−1

T

∣∣∣∣∣K−1
T

∣∣ , ∀ T ⊆ K, (2.21)

and

log

∣∣∣∣ L∑
�=1

H†
�,KB�H�,K +K−1

K

∣∣∣∣∣∣∣∣ ∑
�∈Sc

H†
�,KB�H�,K +K−1

K

∣∣∣∣ +
∑
�∈S

log
|Σ−1

� |
|Σ−1

� −B�|
<

∑
�∈S

C�, ∀ S ⊆ L, (2.22)

for some 0 � B� � Σ−1
� , where KT = E

[
XT X

†
T

]
is the covariance matrix of XT , and H�,T denotes

the channel matrix from XT to Y�. Moreover, under the fixed fronthaul capacity constraints C� for

� = 1, . . . , L, the rate regions achieved by with successive decoding RG
SD,GIn is defined as

RG
SD,GIn =

{
(R1, . . . , RK) : (R1, · · · , RK , C1, . . . , CL) ∈ PG

SD,GIn

}
(2.23)

2.4.2 Gaussian Input and Gaussian Quantization Achieve Capacity to within

Constant Gap

With Gaussian input and Gaussian quantization, the rate region of joint decoding (2.19) can be shown

to be within a constant gap to the capacity region of uplink C-RAN. This constant-gap result is stated

in the following theorem.

Theorem 2.3 For any rate tuple (R1, R2, . . . , RK) within the cut-set bound for uplink C-RAN with fixed

fronthaul capacities of C� shown in Fig. 2.1, the rate tuple (R1−η,R2−η, . . . , RK−η), with η = NL+M

is achievable for compress-and-forward with Gaussian input, Gaussian quantization, and joint decoding,

where L is the number of BSs in the network, M is the number of transmit antennas at user, and N is

the number of receive antennas at BS, i.e., (R1 − η,R2 − η, . . . , RK − η) ∈ RG
JD,GIn.

Proof. See Appendix D.

Although the uplink C-RAN model is an example of a relay network for which noisy network coding

approach applies and it is known that compress-and-forward with joint decoding achieves the same rate
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region as noisy network coding for uplink C-RAN, we remark that Theorem 2.3 does not immediately

follow from the constant-gap optimality result of noisy network coding [16]. The constant-gap optimality

of noisy network coding is proven for Gaussian relay networks, whereas the uplink C-RAN model contains

fronthaul links which are digital connections and not Gaussian channels.

Combining with our earlier results on the optimality of successive decoding, constant-gap optimality

results can also be obtained for compress-and-forwardwith generalized successive decoding and successive

decoding. These results are summarized in the following corollary.

Corollary 2.1 For the uplink C-RAN model as shown in Fig. 2.1, compress-and-forward with generalized

successive decoding, under Gaussian input and Gaussian quantization achieves the capacity region to

within NL+M bits per complex dimension if the fronthaul links are subjected to a sum capacity constraint∑L
�=1C� ≤ C. Furthermore, compress-and-forward with successive decoding, under Gaussian input and

Gaussian quantization, achieves the sum capacity of an uplink C-RAN model with individual fronthaul

constraints to within NL+MK bits per complex dimension.

2.4.3 Optimality of Gaussian Quantization under Joint Decoding

For the Gaussian uplink MIMO C-RAN model, it is known that Gaussian input and Gaussian quan-

tization are not jointly optimal [12]. However, if the quantization noise is fixed as Gaussian, then the

optimal input distribution must be Gaussian. This is because the channel reduces to a conventional

Gaussian multiple-access channel in this case. The main result of this section is that the converse is

also true, i.e., under fixed Gaussian input, Gaussian quantization actually maximizes the achievable rate

region of the uplink C-RAN model under joint decoding. The work in this section is done jointly with

Jun Chen and Yinfei Xu. Theorem 2.4 and the proof are contributions of Yinfei Xu.

Under fixed fronthaul capacity constraints C� for � = 1, . . . , L, we let R∗
JD,GIn denote the rate region

of joint decoding under Gaussian input and optimal quantization. In the following, we first define Fisher

information and state the two main tools for proving this result: the Bruijn identity and the Fisher

information inequality. We then present the main theorem on the optimality of Gaussian quantization

for joint decoding, i.e., RG
JD,GIn = R∗

JD,GIn.

Definition 2.4.1. Let X be any random vector with probability density function f (x). The Fisher

information of the distribution of X is defined as

J (X) = E

[
(∇ log f (x)) (∇ log f (x))T

]
(2.24)

Lemma 2.1 (Fisher Information Inequality, [55] [47, Lemma 2]) Let (U,X) be an arbitrary complex

random vector, where the conditional Fisher information of X conditioned on U exists. We have

log
∣∣(πe)J−1 (X|U)

∣∣ ≤ h (X|U) . (2.25)

Lemma 2.2 (Bruijn Identity, [56] [47, Lemma 3]) Let (V1,V2) be an arbitrary random vector with finite

second moments, and N be a zero-mean Gaussian random vector with covariance ΛN . Assume (V1,V2)

and N are independent. We have

cov (V2|V1,V2 +N) = ΛN −ΛNJ (V2 +N|V1)ΛN . (2.26)
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Theorem 2.4 For the uplink C-RAN under fixed Gaussian input distribution and assuming joint de-

coding, Gaussian quantization is optimal, i.e. RG
JD,GIn = R∗

JD,GIn.

Proof. Recall that the achievable rate region of the compress-and-forward scheme under joint decoding

is given by the set of (R1, . . . , RK) derived from (2.2) under the joint distribution

p (x1, . . . ,xK ,y1, . . . ,yL, ŷ1, . . . , ŷL) =
K∏

k=1

p (xk)
L∏

�=1

p (y�|x1, . . . ,xK)
L∏

�=1

p (ŷ�|y�) . (2.27)

For fixed Gaussian input XK ∼ CN (0,KK) and fixed
∏L

�=1 p(ŷ�|y�), choose B� with 0 � B� � Σ−1
�

such that

cov
(
Y�|XK, Ŷ�

)
= Σ� −Σ�B�Σ�, � = 1, · · · , L.

We proceed to show that the achievable rate region as given by (2.19) with a Gaussian
∏L

�=1 p(ŷ�|y�) ∼
CN (Y�,Q�), where Q� = B−1

� −Σ�, is as large as that of (2.2) under Gaussian input.

First, note that

I
(
Y�; Ŷ�|XK

)
= log |(πe)Σ�| − h

(
Y�|XK, Ŷ�

)
≥ log |(πe)Σ�| − log

∣∣∣(πe) cov(
Y�|XK, Ŷ�

)∣∣∣
= log

∣∣Σ−1
�

∣∣∣∣Σ−1
� −B�

∣∣ , � = 1, · · · , L, (2.28)

where we use the fact that Gaussian distribution maximizes differential entropy.

Moreover, we have

I
(
XT ; ŶSc |XT c

)
= h (XT )− h

(
XT |XT c , ŶSc

)
≤ log |KT | − log

∣∣∣J−1
(
XT |XT c , ŶSc

)∣∣∣ ,
where the inequality is due to Lemma 2.1. Since

YSc = HSc,T XT +HSc,T cXT c + ZSc ,

it follows from the MMSE estimation of Gaussian random vectors that

XT = E [XT |XT c ,YSc ] +NT ,Sc

=
∑
�∈Sc

GT ,� (Y� −H�,T cXT c) +NT ,Sc ,

where

GT ,� =

⎛⎝K−1
T +

∑
j∈Sc

H†
j,T Σ

−1
j Hj,T

⎞⎠−1

H†
�,T Σ

−1
� ,
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and NT ,Sc ∼ CN (0,ΛN) with covariance matrix

ΛN =

(
K−1

T +
∑
�∈Sc

H†
�,T Σ

−1
� H�,T

)−1

. (2.29)

Here E [XT |XT c ,YSc ] is the MMSE estimator of XT from XT c ,YSc . The error in estimation is NT ,Sc ,

and the MMSE matrix is ΛN.

By the matrix complementary identity between Fisher information matrix and MMSE in Lemma 2.2,

we have

J
(
XT |XT c , ŶSc

)
= Λ−1

N −Λ−1
N cov

(∑
�∈Sc

GT ,�(Y� −H�,T cXT c)|XK, ŶSc

)
Λ−1

N

= Λ−1
N −Λ−1

N cov

(∑
�∈Sc

GT ,�Y�|XK, ŶSc

)
Λ−1

N

= Λ−1
N −Λ−1

N

[∑
�∈Sc

GT ,� cov
(
Y�|XK, Ŷ�

)
G†

T ,�

]
Λ−1

N

= Λ−1
N −

∑
�∈Sc

H†
�,T

(
Σ−1

� −B�

)
H�,T

= K−1
T +

∑
�∈Sc

H†
�,T B�H�,T .

Therefore,

I
(
XT ; ŶSc |XT c

)
≤ log

∣∣∣J(XT |XT c , ŶSc)
∣∣∣∣∣K−1

T
∣∣

= log

∣∣∣K−1
T +

∑
�∈Sc H

†
�,T B�H�,T

∣∣∣∣∣K−1
T

∣∣ (2.30)

for all T ⊆ K and S ⊆ L. Combining (2.28) and (2.30), we conclude that RG
JD,GIn as derived from

(2.19) is as large as R∗
JD,GIn. Therefore, RG

JD,GIn = R∗
JD,GIn.

2.4.4 Optimization of Gaussian Input and Gaussian Quantization Noise Co-

variance Matrices

This section addresses the numerical optimization of the Gaussian input and quantization noise covari-

ance matrices for uplink MIMO C-RAN under given fronthaul capacity constraints. First, we note that

even when restricting to Gaussian input and Gaussian quantization, the joint optimization of input

and quantization noise covariance matrices is still a challenging problem for the uplink MIMO C-RAN.

However, if we fix the quantization noise covariance, then the input optimization reduces to that of

optimizing a conventional Gaussian multiple-access channel. In particular, the problem of maximizing

the weighted sum rate can be formulated as a convex optimization, which can be readily solved [57].

Conversely, if we fix the transmit covariance matrix, the optimization of quantization noise covariance

can in some cases be formulated as convex optimization. The key enabling fact is the reparameterization

in term of B� (2.18), instead of direct optimization over Q�. Consider first the case of joint decoding.
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Using (2.19) under the fixed C� for � = 1, . . . , L, the weighted sum rate maximization problem can be

formulated over {Rk,B�} as follows:

max
Rk,B�

K∑
k=1

μkRk (2.31)

s.t.
∑
k∈T

Rk ≤
∑
�∈S

[
C� − log

|Σ−1
� |

|Σ−1
� −B�|

]

+ log

∣∣∣∑�∈Sc H
†
�,T B�H�,T +K−1

T

∣∣∣∣∣K−1
T

∣∣ , ∀ T ⊆ K, ∀S ⊆ L,

0 � B� � Σ−1
� , ∀ � ∈ L.

where μk represents the weight associated with user k, which is typically determined from upper layer

protocols. The key observation is that the above problem is convex in {Rk,B�}. However, we also

note that because of joint decoding, the number of constraints is exponential in the size of the network.

Consequently, the above optimization problem can only be solved for small networks in practice.

Note that the above formulation considers the optimization of instantaneous achievable rates Rk

under instantaneous fronthaul capacity constraints C� in a fixed time slot. The solution obtained,

however, also applies to the more general case of optimizing the average rates under average fronthaul.

This is because if we consider a slightly more general formulation of optimizing an objective of

max
Rk,B�,C�

K∑
k=1

μkRk −
L∑

�=1

ν�C� (2.32)

under the same constraints as in (2.31). Such an optimization problem is convex, so time-sharing is not

needed. For this reason, the rest of this section considers the formulation with instantaneous rates only.

We now consider the weighted sum-rate maximization problem for the case of successive decoding

of the quantization codewords followed by the user messages. However, the direct characterization of

successive decoding rate (2.21)-(2.22) does not give rise to a convex formulation. Nevertheless, for the

special case of maximizing the sum rate (i.e., with μ1 = · · · = μK = 1), using Theorem 2.2, which

shows that successive decoding achieves the same maximum sum rate as joint decoding, the sum-rate

maximization problem with successive decoding can be equivalently formulated as follows:

Theorem 2.5 For the uplink C-RAN model with individual fronthaul capacity constraint C� as shown in

Fig. 2.1, the sum rate maximization problem under successive decoding can be formulated as the following

convex problem:

max
R,B�

R (2.33)

s.t. R ≤
∑
�∈S

[
C� − log

|Σ−1
� |

|Σ−1
� −B�|

]

+ log

∣∣∣∑�∈Sc H
†
�,T B�H�,T +K−1

K

∣∣∣∣∣K−1
K

∣∣ , ∀S ⊆ L,

0 � B� � Σ−1
� , ∀ � ∈ L.
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Furthermore, if the fronthaul links are subject to a sum capacity constraint of C, the sum rate maximiza-

tion problem can be formulated as the following convex problem:

max
R,B�

R (2.34)

s.t. R ≤ log

∣∣∣∑L
�=1 H

†
�,KB�H�,K +K−1

K

∣∣∣∣∣K−1
K

∣∣ ,

R+

L∑
�=1

log
|Σ−1

� |
|Σ−1

� −B�|
≤ C,

0 � B� � Σ−1
� , ∀ � ∈ L.

We remark that the formulation for uplink C-RAN with individual fronthaul capacities (2.33) has

exponential number of constraints, because the CP in effect needs to search over L! different decoding

orders of quantization codewords at the BSs. In practical implementation, a heuristic method can be

used to determine the decoding orders of quantization codewords for avoiding the exponential search [40,

58]. Alternatively, if the C-RAN has a sum fronthaul constraint, then the number of constraints is

linear in network size, because we only need to consider the case of S = L and S = ∅ in (2.33).

Consequently, the resulting quantization noise covariance optimization problem (2.34) can be solved in

polynomial time. Note that convexity is a key advantage of the above problem formulations as compared

to previous approaches in the literature (e.g. [19, 20]) that parameterize the optimization problem over

the quantization noise covariance Q�, which leads to a nonconvex formulation.

We emphasize the importance of Gaussian input for the convex formulation in Theorem 2.5. Suppose

that both input signal XK and compressed signal Ŷ� are discrete random vectors with finite alphabet.

For fixed input distribution, the sum-rate maximization problem under the sum fronthaul constraint can

be written as

max
p(ŷ�|y�)

I
(
XK; ŶL

)
, (2.35)

s.t. I
(
YL; ŶL

)
≤ C,

p (ŷ�|y�) ≥ 0,
∑
ŷ�

p (ŷ�|y�) = 1, ∀ � ∈ L.

The above problem can be thought as a variant of the information bottleneck method [48], which can be

solved by a generalized Blahut-Arimoto (BA) algorithm [59,60]. However, due to the non-convex nature

of problem (2.35), the generalized BA algorithm can only converge to a local optimum.

2.5 Summary

This chapter provides a number of information theoretical results on the compress-and-forward scheme

for an uplink MIMO C-RAN model with capacity-limited fronthaul. The relationship between differ-

ent rate regions for compress-and-forward is illustrated in Fig. 2.3. It is shown that the generalized

successive decoding scheme, which allows arbitrary decoding orders between quantization and message

codewords, can achieve the same rate region as joint decoding under a sum fronthaul constraint. More-

over, the practical successive decoding of the quantization codewords followed by the user messages is
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shown to achieve the same maximum sum rate as joint decoding under individual fronthaul constraints.

Additionally, if the input distribution is assumed to be Gaussian, it is shown that Gaussian quantization

maximizes the achievable rate region of joint decoding. With Gaussian input signaling, the optimization

of Gaussian quantization for maximizing the weighted sum rate under joint decoding and the sum rate

under successive decoding can be cast as convex optimization problems, which facilitates its efficient

numerical solution. Finally, Gaussian input and Gaussian quantization achieve the capacity region of

the uplink C-RAN model to within constant gap.

R∗
JD

R∗
JD,GIn

R∗
GSD

R∗
SD

R∗
SD,GIn

Gaussian Signaling: R∗
JD,GIn = RG

JD,GIn

Sum Fronthaul: R∗
GSD,s = R∗

JD,s

Sum Rate: R∗
SD,SUM = R∗

JD,SUM

R∗
SD,SUM = R∗

JD,SUM = RG
SD,SUM

Figure 2.3: Relationship between the rate regions under compress-and-forward in uplink C-RAN

Collectively, these results provide justifications for the practical choice of using Gaussian input signals

at the user terminals, Gaussian quantization at the relaying BSs, and successive decoding of quantization

codewords followed by user messages at the CP for implementing uplink MIMO C-RAN. Under this choice

of fronthaul compression and decoding strategies, the following chapters further study the optimization

of quantization noise covariance and transmit signals for maximizing the network utility of the uplink

C-RAN system with different fronthaul constraints. Specifically, Chapter 3 investigates the optimization

of quantization noise levels for uplink C-RAN under a sum fronthaul capacity constraint. Chapter 4

further studies the joint optimization of transmit beamforming and fronthaul compression for uplink

C-RAN under individual fronthaul capacity constraints.
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Chapter 3

Optimized Compression under a

Sum Fronthaul Constraint

3.1 Introduction

In Chapter 2, we have shown that under compress-and-forward Gaussian quantization is optimal if the

input is Gaussian and successive decoding of quantization codewords first, and then user messages,

can achieve the maximum sum rate for uplink C-RAN. This chapter further deals with the practical

fronthaul design for uplink C-RAN using the compress-and-forward scheme with Gaussian quantization

at BS and successive decoding at CP. The uplink of C-RAN model, as shown in Fig. 3.1, consists of

multiple remote users sending independent messages while interfering with each other at their respective

BSs. The BSs are connected to the CP via noiseless fronthaul links with a finite sum capacity constraint

C. The user messages are eventually decoded at the CP. This uplink C-RAN model can be thought of as

a virtual multiple-access channel (VMAC) between the users and the CP, with the BSs acting as relays.

The antennas of multiple BSs essentially become a virtual MIMO antenna array capable of spatially

multiplexing multiple user terminals.

To explore the advantage of the C-RAN architecture, this chapter considers a compress-and-forward

relay strategy in which the BSs send compressed version of their received signals to the CP through

the fronthaul, and the CP either jointly or successively decodes all the user messages. Depending on

the different compression strategies used at BSs, either with Wyner-Ziv (WZ) coding or with single-user

(SU) compression, the coding strategies in this chapter are named VMAC-WZ or VMAC-SU respectively.

A key parameter in fronthaul compression design is the level of quantization noise introduced by the

compression operation. The main objective of this chapter is to identify efficient algorithms for the

optimal setting of quantization noise levels for maximizing the network utility of uplink C-RAN with

sum-capacity limited fronthaul.

3.1.1 Related Work

The achievable rates and the relay strategy of the uplink C-RAN architecture have been studied pre-

viously in the information theory literature. Under a Wyner model, the achievable rate of an uplink

cellular network with BS cooperation is studied in [61] assuming unlimited cooperation, then extended

25
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X1

X2

XL

Z1

Z2

ZL

h11

h21 h12

h1L hL1

h2L hL2

h22

hLL

Ŷ1
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Figure 3.1: The uplink of a cloud radio access network with a finite sum fronthaul

to the limited cooperation case in [62], where the performances of relaying strategies such as decode-

and-forward and compress-and-forward are evaluated.

The uplink C-RAN model considered in this chapter is closely related to that in [12–14], where the

fundamental achievable rates using the compress-and-forward strategy are characterized under individual

fronthaul capacity constraints. The achievable rates of [12–14] are derived assuming that the quantization

codewords and the user messages are decoded jointly at the CP. However, such a joint decoding strategy

is computationally complex. Further, the question of how to optimally set the quantization noise level

is left open.

The uplink C-RAN model can be thought of as a particular instance of a general relay network with

a single destination for which several recent works [15–17] have been able to characterize the information

theoretical capacity to within a constant gap. The achievability schemes of [15–17] are still based on

joint decoding, but with the new insight that in order to achieve to within a constant gap to the outer

bound, the quantization noise level should be set at the background noise level.

This chapter goes one step further in identifying relaying and decoding schemes that have lower

complexity than joint decoding, while maintaining certain optimality. Toward this end, this chapter

shows that a successive decoding strategy in which the CP first decodes the quantization codewords,

then decodes the user messages based on the quantized signals from all BSs can achieve to within a

constant gap to the sum capacity of the network. We note that the proposed scheme is different and

performs better than the per-BS successive interference cancellation (SIC) scheme of [34], where each

user message is decoded based on the quantization codeword of its own BS only and the previously

decoded messages.

A main focus of this chapter is the optimization of the quantization noise levels at the BSs for the

uplink C-RAN model. In this direction, the present chapter is related to the work of [19], which uses a

gradient approach to solve a quantization noise level optimization problem for a closely related problem.

The present chapter is also closely related to [20], where the quantization noise level optimization problem

is solved on a per-BS basis (and the robustness of the optimization procedure is addressed in addition).

In contrast, the algorithm proposed in this chapter involves a more direct optimization objective where

the quantization noise levels of all BSs are optimized jointly.
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3.1.2 Main Contributions

From a theoretical capacity analysis perspective, this chapter shows that VMAC-WZ with successive

decoding can achieve the sum capacity of the C-RAN model to within a constant gap, while VMAC-SU

achieves the sum capacity to within a constant gap under a channel diagonal dominant condition. Since

the VMAC schemes have the advantage of low decoding complexity and low decoding delay as compared

to joint decoding, the constant-gap results provide a strong motivation for the possible implementation

of the VMAC schemes in practical C-RAN systems.

From an optimization perspective, this chapter proposes an alternating convex optimization algo-

rithm for optimizing the quantization noise levels for weighted sum-rate maximization for the VMAC-

WZ scheme, and proposes reformulation of the problem in term of optimizing fronthaul capacities for

the VMAC-SU scheme. Further, this chapter shows that in the high signal-to-quantization-noise-ratio

(SQNR) regime, the quantization noise level should be set to be proportional to the background noise

level, regardless of the transmit power and the channel condition. Based on this observation, low-

complexity algorithms are developed for the quantization noise level design in practical C-RAN scenar-

ios.

Finally, this chapter evaluates the performance of the proposed VMAC schemes in multicell networks

and in heterogeneous topologies where macro- and pico-cells may have significantly different fronthaul

capacity constraints. Numerical simulations show that the C-RAN architecture can bring significant per-

formance improvement, and that the proposed approximate quantization noise level setting can already

realize much of the gains.

3.1.3 Chapter Organization

The rest of the chapter is organized as follows. Section 3.2 introduces the VMAC scheme with WZ

compression and with SU compression. Section 3.3 focuses on optimizing the quantization noise level

for the VMAC-WZ scheme, where an alternating convex optimization algorithm and an approximation

algorithm are proposed. It is shown that the VMAC-WZ scheme achieves the sum capacity of the uplink

C-RAN model to within a constant gap. Section 3.4 focuses on the optimization of quantization noise

levels for the VMAC-SU scheme, and formulates an equivalent fronthaul capacity allocation problem. A

constant-gap capacity result for the VMAC-SU scheme is demonstrated. The proposed VMAC schemes

are evaluated numerically for practical multicell/picocell networks in Section 3.5. Conclusions are drawn

in Section 3.6.

3.2 Preliminaries

3.2.1 System Model

This chapter considers the uplink C-RAN, where L single-antenna remote users send independent mes-

sages to L single-antenna BSs forming a fixed cluster, as shown in Fig. 3.11. The BSs are connected

to a CP through noiseless fronthaul links of capacities Ci, i = 1, . . . , L. The user messages need to be

eventually decoded at the CP. A key modelling assumption of this chapter is that the fronthaul capaci-

ties Ci can be adapted to the channel condition and user traffic demand, subject to an overall capacity

1For simple notation, this chapter assumes that both the number of users and the number of BSs are L. All the results
in this chapter hold for the general case where there are K users and L BSs in the network.
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constraint, i.e.
∑L

i=1 Ci ≤ C, which is justified in Chapter 2. For simplicity, both the remote users and

the BSs are assumed to have a single antenna each here, but most results of this chapter can be extended

to the MIMO case.

The uplink C-RAN model can be thought of as an L×L interference channel between the users and

the BSs, followed by a noiseless multiple-access channel between the BSs and the CP. Alternatively, it

can also be thought of as a virtual multiple-access channel between the users and the CP with the BSs

serving as relay nodes. Let Xi denote the signal transmitted by the ith user. The signal received at the

ith BS can be expressed as

Yi =

L∑
j=1

hijXj + Zi for i = 1, 2, . . . , L,

where Zi ∼ CN (0, σ2
i ) is the independent background noise, and hij denotes the complex channel from

the jth user to the ith BS. In this chapter, we assume that the user scheduling is fixed, and perfect CSI is

available to all the BSs and to the centralized processor. Further, it is assumed that each user transmits

at a fixed power, i.e., Xi’s are complex-valued Gaussian signals with E
[
|Xi|2

]
= Pi, for i = 1, . . . , L.

This chapter uses a compress-and-forward scheme in which the BSs quantize the received signals Y =

[Y1, Y2, . . . , YL]
T into Ŷ = [Ŷ1, Ŷ2, . . . , ŶL]

T using either Wyner-Ziv coding or single-user compression

and transmit the compressed bits to the CP through noiseless fronthaul links. A two-stage successive

decoding strategy is employed, where the CP first recovers the quantized signals Ŷ, and then decodes

user messages X = [X1, X2, . . . , XL]
T based on the quantized signals Ŷ. The successive decoding nature

of the proposed scheme overcomes the delay and high computational complexity associated with joint

decoding (e.g., [13,14]). Let qi = E(Ŷi − Yi)
2 be the average squared-error distortion between Yi and Ŷi.

In this chapter, the distortion level qi is referred to as the quantization noise level.

3.2.2 The VMAC-WZ Scheme

Because of the mutual interference between the neighboring users, the received signals at the different

BSs are statistically correlated. Consequently, Wyner-Ziv compression can be used to achieve higher

compression efficiency and to better utilize the limited fronthaul capacities than per-link single-user

compression.

Proposition 3.1 For the uplink C-RAN model with fronthaul sum capacity constraint C as shown in

Fig. 3.1, the rate tuples (R1, R2, . . . , RL) that satisfy the following set of constraints are achievable using

the VMAC-WZ scheme: ∑
i∈S

Ri ≤ log

∣∣∣HSKSH
†
S +Λq + diag(σ2

i )
∣∣∣

|Λq + diag(σ2
i )|

(3.1)

such that

log

∣∣∣HLKLH
†
L +Λq + diag(σ2

i )
∣∣∣

|Λq|
≤ C (3.2)

for all S ⊆ {1, 2, . . . , L}, where KS = E

[
XSX

†
S

]
is the covariance matrix of XS , Λq = diag(q1, q2, . . . , qL)

is the covariance matrix of the quantization noise, and HS denotes the channel matrix from XS to Y.

Proof. This theorem is a generalization of [12, Theorem 1], which treats the case of a single transmitter

with multiple relays under individual fronthaul capacity constraints. In [12, Theorem 1], it has been
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shown that R < I(X; Ŷ) is achievable subject to

I(YS ; ŶS |ŶSc) ≤
∑
i∈S

Ci, ∀S ⊆ {1, 2, . . . , L} (3.3)

under a product distribution p(ŷ|y) = ΠL
i=1p(ŷi|yi). Note that under the sum fronthaul constraint∑L

i=1 Ci ≤ C, the constraint (3.3) simply becomes I(Y; Ŷ) ≤ C. Now, with multiple users and consid-

ering the sum rate over any subset S, we likewise have∑
i∈S

Ri ≤ I(XS ; Ŷ|XSc), ∀S ⊆ {1, 2, . . . , L} (3.4)

subject to

I(Y; Ŷ) ≤ C. (3.5)

Let p(ŷi|yi) be defined by the test channel Ŷi = Yi +Qi, where Qi ∼ CN (0, qi) is the quantization noise

independent of everything else, and qi is the quantization noise level. The achievable rate region (3.1)

subject to (3.2) can now be derived by evaluating the mutual information expressions (3.4) and (3.5)

assuming complex Gaussian distribution for Xi.

3.2.3 The VMAC-SU Scheme

Although Wyner-Ziv coding represents a better utilization of the fronthaul, it is also complex to imple-

ment in practice. In this section, Wyner-Ziv coding is replaced by single-user compression. We derive

the achievable rate region when the compression process does not take advantage of the statistical corre-

lations between the received signals at different BSs. In this case, each BS simply quantizes its received

signals using a vector quantizer.

Proposition 3.2 For the uplink C-RAN model with L BSs and sum fronthaul capacity C shown in Fig.

3.1, the following rate tuple (R1, R2, . . . , RL) is achievable using the VMAC-SU scheme:

∑
i∈S

Ri ≤ log

∣∣∣HSKSH
†
S +Λq + diag(σ2

i )
∣∣∣

|Λq + diag(σ2
i )|

(3.6)

such that

log

∣∣∣diag(HLKLH
†
L) +Λq + diag(σ2

i )
∣∣∣

|Λq|
≤ C (3.7)

for all S ⊆ {1, 2, . . . , L}, where KS = E

[
XSX

†
S

]
is the covariance matrix of XS , Λq = diag(q1, . . . , qL)

is the covariance matrix of the quantization noise, and HS denotes the channel matrix from XS to Y.

Proposition 3.2 is a straightforward extension of Proposition 3.1, where the rate expression (3.6) is

given by the achievable sum rate I(XS ; Ŷ) and the constraint (3.7) follows from the fronthaul constraint∑L
i=1 I(Yi; Ŷi) ≤ C. The rate expression implicitly assumes the successive decoding of the quantization

codewords first, then the transmitted signals.

By comparing the expressions (3.2) with (3.7), it is not hard to find that the quantization noise

levels supported by VMAC-WZ is smaller than that supported by VMAC-SU under the same fronthaul

constraint. This is because that Wyner-Ziv coding is more efficient than single-user compression, which
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results lower compression distortion (which is corresponding to smaller quantization noise level) under

the same compression rate (i.e., fronthaul capacity). Therefore, one can conclude that the VMAC-WZ

scheme always achieves better performance than the VMAC-SU scheme. However, as it is shown in

the later section, the gain obtained by Wyner-Ziv coding over the single-compression vanishes as the

fronthaul capacity increases.

3.3 Quantization Noise Level Optimization for VMAC-WZ

The achievable rate regions for the VMAC schemes have an intuitive interpretation. The quantization

process adds quantization noise to the overall multiple-access channel. Finer quantization results in

higher overall rate, but also leads to higher fronthaul capacity requirements. To characterize the tradeoff

between the achievable rate and the fronthaul constraint, this section formulates a weighted sum rate

maximization problem over the quantization noise levels {q1, . . . , qL} under a sum fronthaul capacity

constraint for VMAC-WZ.

3.3.1 Problem Formulation

Let μi be the weights representing the priorities associated with the mobile users typically determined

from upper layer protocols. Without loss of generality, let μL ≥ μL−1 ≥ · · · ≥ μ1 ≥ 0. The boundary

of the achievable rate region for VMAC-WZ can be attained using a successive decoding approach with

a decoding order from user 1 to L. A weighted rate sum maximization problem that characterizes the

VMAC-WZ achievable rate region can be written as:

max
Λq

L∑
i=1

μi log

∣∣∣∑L
j=i Pjhjh

†
j + diag(σ2

i ) +Λq

∣∣∣∣∣∣∑L
j>i Pjhjh

†
j + diag(σ2

i ) +Λq

∣∣∣
s.t. log

∣∣∣∑L
j=1 Pjhjh

†
j + diag(σ2

i ) +Λq

∣∣∣
|Λq|

≤ C,

Λq(i, j) = 0, for i �= j,

Λq(i, i) ≥ 0, (3.8)

where Λq(i, j) is the (i, j)th entry of matrix Λq, and the optimization is over the quantization noise

levels Λq = diag(qi).

The objective function of (3.8) is a convex function of Λq (instead of concave). Consequently, finding

the global optimum solution of (3.8) is challenging. In [19], an algorithm based on the gradient projection

method together with a bisection search on the dual variable is proposed for a related problem, where the

quantization noise levels are optimized one after another in a coordinated fashion. The above problem

formulation is also related to that in [20] where the quantization noise levels at the BSs are optimized

for sum-rate maximization on a per-BS basis. The advantage of the present formulation is that the

quantization noise levels across the BSs are optimized jointly, resulting in better overall performance.
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3.3.2 Alternating Convex Optimization Approach

This section proposes an alternating convex optimization (ACO) scheme capable of arriving at a station-

ary point of the problem (3.8). The key observation is that the objective function of (3.8) is a difference

of two concave functions. The idea is to linearize the second concave function to obtain a concave

lower bound of the original objective function, then successively approximate the optimal solution by

optimizing this lower bound. The ACO scheme is closely related to the block successive minimization

method [63] or minorize-maximization algorithm [64], which can be used to solve a broad class of opti-

mization problems with nonconvex objective functions over a convex set. These optimization techniques

have also been previously applied for solving related problems in wireless communications; see [65, 66].

Before presenting the proposed algorithm, we first state the following lemma, which is a direct

consequence of Fenchel’s inequality for concave functions.

Lemma 3.1 For positive definite Hermitian matrices Ω,Γ ∈ CL×L,

log |Ω| ≤ log |Γ|+Tr
(
Γ−1Ω

)
− L (3.9)

with equality if and only if Ω = Γ.

Applying Lemma 3.1, we reformulate problem (3.8) as a double maximization problem:

max
Λq,Γ�0

L∑
i=1

(μi − μi−1) log

∣∣∣∣∣∣
L∑

j=i

Pjhjh
†
j + diag(Γ2

i ) +Λq

∣∣∣∣∣∣
−μL

(
log |Γ|+Tr

(
Γ−1(diag(σ2

i ) +Λq)
))

s.t. log

∣∣∣∑L
i=1 Pihih

†
i + diag(σ2

i ) +Λq

∣∣∣
|Λq|

≤ C

Λq(i, j) = 0, for i �= j,

Λq(i, i) ≥ 0, (3.10)

where μL ≥ μL−1 ≥ · · · ≥ μ1 > μ0 = 0.

Although the maximization problem (3.10) is still nonconvex with respect to (Λq,Γ), the advantage

of the reformulation is that fixing either Λq or Γ, problem (3.10) is a convex optimization with respect

to the other variable. This coordinate-wise convexity property enables us to use an iterative coordinate

ascent algorithm. Specifically, when Λq is fixed, we solve

min
Γ�0

log |Γ|+Tr
(
Γ−1(diag(σ2

i ) +Λq)
)
. (3.11)

Following Lemma 3.1, problem (3.11) has the following closed-form solution:

Γ∗ = diag(σi) +Λq. (3.12)
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If Γ is fixed, problem (3.10) becomes

max
Λq

L∑
i=1

(μi − μi−1) log

∣∣∣∣∣∣
L∑

j=i

Pjhjh
†
j + diag(σ2

i ) +Λq

∣∣∣∣∣∣
−μLTr

(
Γ−1(diag(σ2

i ) +Λq)
)

s.t. log

∣∣∣∑L
i=1 Pihih

†
i + diag(σ2

i ) +Λq

∣∣∣
|Λq|

≤ C,

Λq(i, j) = 0, for i �= j,

Λq(i, i) ≥ 0. (3.13)

It is easy to verify that the above problem is a convex optimization problem, as the objective function

is now concave with respected to Λq. So, it can be solved efficiently with polynomial complexity. We

summarize the ACO algorithm below:

Algorithm 3.1 Alternating Convex Optimization (ACO)

1: Initialize Λ
(0)
q = Γ(0) = γI.

2: repeat

3: Fix Γ = Γ(i), solve the convex optimization problem (3.13) over Λq. Set Λ
(i+1)
q to be the optimal

point.

4: Update Γ(i+1) = diag(σ2
i ) +Λ

(i+1)
q .

5: until convergence

The ACO algorithm yields a nondecreasing sequence of objective values for problem (3.10). So the

algorithm is guaranteed to converge. Moreover, it converges to a stationary point of the optimization

problem.

Theorem 3.1 From any initial point (Λ
(0)
q ,Γ(0)), the limit point (Λ∗

q ,Γ
∗) generated by the alternating

convex optimization algorithm is a stationary point of the weighted sum-rate maximization problem (3.8).

The proof of Theorem 3.1 is similar to that of [65, Proposition 1] and is also closely related to the

convergence proof of successive convex approximation algorithm [66]. First, based on a result on block

coordinate descent [67, Corollary 2], it can be shown that the ACO algorithm converges to a stationary

point of the double maximization problem (3.10). Now, suppose that (Λ∗
q ,Γ

∗) is a stationary point of

(3.10), we have

Tr
(
∇ΛqF

(
Λ∗

q ,Γ
∗)† , (Λq −Λ∗

q)
)
≤ 0, ∀ Λq ∈ W , (3.14)

where F (Λq,Γ) denotes the objective function of (3.10). Using the same argument as the proof of [65,

Proposition 1], we can substitute Γ∗ = diag(σi) +Λ∗
q into (3.14) and verify that Λ∗

q is also a stationary

point of (3.8).

We mention here that although the ACO algorithm is stated here for the SISO case, it is equally

applicable to the MIMO case, where the BSs are equipped with multiple antennas, and the optimization

is over quantization covariance matrices. In the following, we highlight the advantage of our approach

as compared to that of [19, 20].

In [19], a gradient projection method together with a bisection search on the dual variable is used

to solve the weighted sum-rate maximization for a related problem. Although the gradient projection
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approach also converges to a stationary point of the problem, it is slower than the proposed ACO

algorithm. This is because the algorithm of [19] relies on per-BS block coordinate gradient descent,

which has sublinear convergence [68], rather than joint optimization across all the BSs. The gradient-

type approach used in [19] is also typically much slower than optimization techniques which use second-

order Hessian information (e.g. Newton’s method) that can be applied to convex problems. In [20],

the optimization of the quantization noise covariance matrices for sum-rate maximization is solved on

a per-BS basis in a greedy fashion, one BS at a time. This approach in general does not converge to a

local optimal solution, (as has already been pointed out in [20]). It cannot be applied to the weighted

sum-rate maximization problem considered in this chapter. In contrast, the ACO algorithm presented

here is capable of solving the optimal quantization noise covariance matrices across all the BSs jointly,

and the convergence to the stationary point is guaranteed.

3.3.3 Optimal Quantization Noise Level at High SQNR

Although locally optimal quantization noise level can be effectively found using the proposed ACO

algorithm for any fixed user schedule, user priority, and channel condition, the implementation of ACO

in practical systems can be computationally intensive, especially in a fast-fading environment or when

the scheduled users in the time-frequency slots change frequently. In this section, we aim to understand

the structure of the optimal solution by deriving the optimal quantization noise level in the high SQNR

regime. The main result of this section is that setting the quantization noise level to be proportional to

the background noise level is approximately optimal for maximizing the overall sum rate. This leads to

an efficient way for setting the quantization noise levels in practice.

Consider the sum-rate maximization problem:

max log

∣∣∣HLKLH
†
L + diag(σ2

i ) +Λq

∣∣∣
|diag(σ2

i ) +Λq|

s.t. log

∣∣∣HLKLH
†
L + diag(σ2

i ) +Λq

∣∣∣
|Λq|

≤ C

Λq(i, j) = 0, for i �= j

Λq(i, i) ≥ 0. (3.15)

This optimization problem is nonconvex, but its Karush-Kuhn-Tucker (KKT) condition still gives a

necessary condition for optimality. To derive the KKT condition, form the Lagrangian

L(Λq, λ,Ψ) = (1− λ) log
∣∣∣HLKLH

†
L + diag(σ2

i ) +Λq

∣∣∣
− log

∣∣diag(σ2
i ) +Λq

∣∣+ λ log |Λq|+Tr(ΨΛq) (3.16)

where Ψ is a matrix whose diagonal entries are zeros and the off-diagonal entries are the dual variables

associated the constraint Λq(i, j) = 0 for i �= j, and λ is the Lagrangian dual variable associated with

the fronthaul sum-capacity constraint.

Setting ∂L/∂Λq to zero, we obtain the optimality condition

(1− λ)(HLKLH
†
L + diag(σ2

i ) +Λq)
−1 − (diag(σ2

i ) +Λq)
−1 + λΛ−1

q +Ψ = 0 (3.17)
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Recall that Ψ has zeros on the diagonal, but can have arbitrary off-diagonal entries. Thus, the above

optimality condition can be simplified as

(1 − λ)diag(HLKLH
†
L + diag(σ2

i ) +Λq)
−1 − (diag(σ2

i ) +Λq)
−1 + λΛ−1

q = 0 (3.18)

First, it is easy to verify that the optimality condition can only be satisfied if 0 ≤ λ < 1. Second, since

Λq +diag(σ2
i ) is the combined quantization and background noise, if the overall system is to operate at

reasonably high spectral efficiency, we must have2 diag(HLKLH
†
L) � diag(σ2

i ) + Λq. Under this high

SQNR condition, we have

diag(HLKLH
†
L + diag(σi) +Λq)

−1 � (diag(σ2
i ) +Λq)

−1

in which case the optimality condition becomes

qi ≈
λ

1− λ
σ2
i (3.19)

where λ ∈ [0, 1) is chosen to satisfy the fronthaul sum-capacity constraint. Thus we see that under high

SQNR, the optimal quantization noise level should be proportional to the background noise level. Note

that λ = 0 corresponds to the infinite fronthaul capacity case where qi = 0. As λ increases, the sum

fronthaul capacity becomes increasingly constrained, and the optimal quantization noise level qi also

increases accordingly.

3.3.4 Sum Capacity to Within a Constant Gap

We now further justify the setting of the quantization noise level to be proportional to the background

noise level by showing that this choice in fact achieves the sum capacity of the uplink C-RAN model

with sum fronthaul capacity constraint to within a constant gap. The gap depends on the number of

BSs in the network but is independent of the channel matrix and the signal-to-noise ratios (SNRs).

Theorem 3.2 For the uplink C-RAN model with a sum fronthaul capacity C as shown in Fig. 3.1,

the VMAC-WZ scheme with the quantization noise levels set to be proportional to the background noise

levels achieves a sum capacity to within one bit per BS per channel use.

Proof. See Appendix E.

The proof of above theorem depends on a comparison of achievable rate with a cut-set outer bound.

The basic idea is to set the quantization noise levels to be at the background noise levels if C is large,

(specifically, C ≥ log
|HKLH†+2diag(σ2

i )|
|diag(σ2

i )|
as in the proof), resulting in at most 1 bit gap per channel use

per BS. When C is small, scaling the quantization noise level by a constant turns out to maintain the

constant-gap optimality.

This result is reminiscent of the more general constant-gap result for arbitrary multicast relay network

[15,16], but this result is both more specific, as it only applies to the sum-capacity constrained fronthaul

case, and also more practically useful, as it assumes successive decoding of quantization codeword first

then user messages, rather than joint decoding.

2Here, “�” denotes component-wise comparison on the diagonal entries.
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A similar constant-gap result can be obtained in the case where both transmitters and receivers are

equipped with multiple antennas. For example, considering the scenario where K users with M transmit

antennas each send independent messages to L BSs with N receive antennas each. It can be shown that

the constant gap for sum capacity is min{KM,NL} bits per channel use. In particular, when K = NL,

i.e., when the degree of freedom in the system is fully utilized, the constant-gap result becomes one bit

per BS antenna per channel use.

3.3.5 Efficient Algorithm for Setting Quantization Noise Level

The main observation in the previous section is that setting the quantization noise levels at different BSs

to be proportional to the background noise levels is near sum-rate optimal under high SQNR and from a

constant-gap-to-capacity perspective. This holds regardless of the transmit power, the channel matrix,

and the user schedule, which is especially advantageous for practical implementation as no adaptation

to the channel condition is needed.

In the following, we propose a simple algorithm for setting the quantization noise level to be qi = ασ2
i

for some appropriate α. Note that with this setting of qi, the fronthaul constraint becomes:

CWZ(α) � log

∣∣∣∑L
j=1 Pjhjh

†
j + (1 + α)diag(σ2

i )
∣∣∣

|αdiag(σ2
i )|

≤ C. (3.20)

Since the fronthaul constraint should be satisfied with equality and since CWZ(α) is monotonic in α,

a simple bisection search can be used to find the suitable α. The algorithm is summarized below as

Algorithm 3.2. As simulation results later in the chapter show, Algorithm 3.2 performs very close to the

optimized scheme (Algorithm 3.1) for practical channel scenarios.

Algorithm 3.2 Approximate Algorithm for VMAC-WZ

1: Set α = 1.
2: while CWZ(α) > C do
3: Set α = 2α.
4: end while
5: Set αmax = α and αmin = 0.
6: Use bisection in [αmin, αmax] to solve CWZ(α) = C.
7: Set qi = ασi.

3.4 Optimal Fronthaul Allocation for VMAC-SU

3.4.1 Problem Formulation

We now turn to the VMAC-SU scheme and consider the weighted sum-rate maximization problem under

a sum fronthaul constraint for the more practical single-user compression scheme. The optimization
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problem can be stated as follows:

max
Λq

L∑
i=1

μi log

∣∣∣∑L
j=i Pjhjh

†
j + diag(σ2

i ) +Λq

∣∣∣∣∣∣∑L
j>i Pjhjh

†
j + diag(σ2

i ) +Λq

∣∣∣
s.t.

L∑
i=1

log

(
1 +

∑L
j=1 Pj |hij |2 + σ2

i

qi

)
≤ C

Λq(i, j) = 0, for i �= j,

Λq(i, i) ≥ 0. (3.21)

As mentioned earlier, the objective function in the above is convex in qi (instead of concave), which is

not easy to maximize. But the ACO algorithm proposed earlier can still be used here to find locally

optimal qi’s. However for VMAC-SU, because the compression at each BS is independent, it is possible

to re-parameterize the problem in term of the rates allocated to the fronthaul links. It is instructive to

work with such a reformulation in order to obtain system design insight. Introduce the new variables

Ci = log

(
1 +

∑L
j=1 Pj |hij |2 + σ2

i

qi

)
. (3.22)

Let γi be the combined quantization and background noise, i.e., γi = σ2
i + qi. Then,

γi =

∑L
j=1 Pj |hij |2 + σ2

i 2
Ci

2Ci − 1
. (3.23)

Further, define Υ = diag(1/γi). By a variable substitution, it is straightforward to establish that the

optimization problem (3.21) is equivalent to the following:

max

L∑
i=1

(μi − μi−1) log

∣∣∣∣∣∣Υ
L∑

j=i

Pjhjh
†
j + I

∣∣∣∣∣∣ (3.24)

s.t.

L∑
i=1

Ci ≤ C,

Ci ≥ 0, i = 1, . . . , L,

where, without loss of generality, it has been assumed μL ≥ · · · ≥ μ1 > μ0 = 0. The above problem

is easier to solve than (3.21), because the feasible set of the problem is a polyhedron with only linear

constraints. For example, it is possible to dualize with respect to the sum fronthaul constraint, then

numerically find a local optimum of the Lagrangian. A bisection on the dual variable can then be used

in an outer loop to solve (3.24).

3.4.2 Optimal Quantization Noise Level at High SQNR

For the VMAC-WZ scheme under high SQNR assumption, setting qi = ασ2
i is approximately optimal

for maximizing the overall sum rate. This section establishes a similar result for the VMAC-SU case.

We first introduce Lagrange multipliers νi ≥ 0 for the positivity constraints Ci ≥ 0, and β ≥ 0 for the
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fronthaul sum-capacity constraint
∑L

i=1 Ci ≤ C, we obtain the following KKT condition

Tr

[
HLKLH

†
L

(
ΥHLKLH

†
L + I

)−1 ∂Υ

∂Ci

]
− β + νi = 0. (3.25)

Note that γi is the combined quantization and background noise. So, under the high SQNR assumption,

where SNR� 1 and Ci � 1, we must have diag(HLKLH
†
L)� diag (γi). Thus

HLKLH
†
L

(
ΥHLKLH

†
L + I

)−1

≈ Υ−1. (3.26)

After some manipulations, the optimality condition now becomes∑L
j=1 Pj |hij |2 + σ2

i∑L
j=1 Pj |hij |2 + σ2

i 2
Ci

− β + νi ≈ 0 (3.27)

where we also use the approximation 2Ci − 1 ≈ 2Ci. Note that νi = 0 whenever Ci > 0. Solving (3.27)

together with
∑L

i=1 Ci = C yields the following approximately optimal fronthaul rate allocation:

Ci ≈ log

(
1− β

β
SNRi +

1

β

)
(3.28)

where SNRi = (
∑L

j=1 Pj |hij |2)/σ2
i and β is chosen such that

∑L
i=1 Ci = C. The corresponding quanti-

zation noise level is given by

qi ≈
β

1− β
σ2
i . (3.29)

We point out here that the same result can also be derived from the KKT condition of (3.21).

The above result shows that setting the quantization noise level to be proportional to the background

noise level is near optimal for maximizing the sum rate for VMAC-SU at high SQNR. This is similar to

the VMAC-WZ case. Intuitively, in the VMAC schemes the intercell interference is completely nulled

by multicell decoding. The achievable sum rate is only limited by the combined quantization noise and

background noise. Thus, it is reasonable that the optimal quantization noise levels only depend on the

background noise levels.

3.4.3 Sum Capacity of Diagonally Dominant Channels

This section provides further justification for choosing the quantization noise level to be proportional

to the background noise level by showing that doing so achieves the sum capacity of the VMAC model

to within a constant gap when the received signal covariance matrix satisfies a diagonally dominant

channel criterion. The received signal covariance matrix is defined as E[YY†] = HLKLH
†
L + diag(σ2

i ).

It is often diagonally dominant, because the path losses from the remote users to the BSs are distance

dependent, and typically each user is associated with its strongest BS. In the following, we define a

diagonally dominant condition for matrices, and state a constant-gap result for sum capacity for the

VMAC-SU scheme under a sum fronthaul constraint.

Definition 3.4.1. For a fixed constant κ > 1, a n × n matrix Ψ is said to be κ-strictly diagonally
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dominant if

|Ψ(i, i)| ≥ κ
n∑

j �=i

|Ψ(i, j)| for all i = 1, . . . , n,

where Ψ(i, j) is the (i, j)-th entry of matrix Ψ.

Theorem 3.3 For the uplink C-RAN model with a sum fronthaul capacity C as shown in Fig. 3.1, if

the received covariance matrix HLKLH
†
L + diag(σ2

i ) is κ-strictly diagonally dominant for κ > 1, then

the VMAC-SU scheme achieves the sum capacity of the uplink CRAN model to within
(
1 + log κ

κ−1

)
bits per BS per channel use.

Proof. See Appendix F.

We note that the above result can be further strengthened when C is large. In this case, setting the

quantization noise levels to be at the background noise levels results in at most 1 bit gap per channel

use per BS to sum capacity. It is not hard to further verify that, in this case, the VMAC-SU scheme is

actually approximately optimal for the entire capacity region of the uplink C-RAN model. Analogous to

Wyner-Ziv compression, a similar constant-gap result for single-user compression can also be obtained

in the case where both users and BSs are equipped with multiple antennas.

3.4.4 Fronthaul Allocation for Heterogeneous Networks

The fact that setting the quantization noise levels to be proportional to the background noise levels is

approximately optimal gives rise to an efficient algorithm for allocating capacities across the fronthaul

links. This section describes an approach similar to the corresponding algorithm for the VMAC-WZ

case. In addition, we further generalize to the case of heterogeneous network with multiple tiers of BSs.

Consider a multi-tier heterogeneous network consisting of not only macro BSs, but also pico-BSs,

coordinated together in a C-RAN architecture. The macro- and pico-BSs typically have very different

fronthaul capacities, so they may be subject to different fronthaul constraints. Let Cm be the sum

fronthaul capacity constraint across the macro-BSs, and Cp be the fronthaul constraint for pico-BSs.

Assuming a VMAC-SU implementation, the fronthaul constraints can be expressed as:

∑
i∈Sm

log

(
1 +

∑L
j=1 Pj |hij |2 + σ2

i

qi

)
≤ Cm (3.30)

∑
i∈Sp

log

(
1 +

∑L
j=1 Pj |hij |2 + σ2

i

qi

)
≤ Cp (3.31)

where Sm and Sm are the sets of macro- and pico-BSs, respectively.

It can be shown that for multi-tier networks, it is also near optimal to set the quantization noise

levels to be proportional to the background noise levels under high SQNR. However, different tiers may

have different proportionality constants. Since the quantization noise level (or equivalently the fronthaul

capacity) for each BS may be set independently without affecting other BSs for VMAC-SU, a simple

bisection algorithm can be used to optimize the quantization noise level (or equivalently the fronthaul

capacity) in each tier independently.

Let

CSU (β) =
∑
i∈S

log

(
1− β

β
SNRi +

1

β

)
(3.32)
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be the sum fronthaul capacity across a particular tier (where S can be Sm for macro-BSs or Sp for

pico-BSs). The bisection algorithm described in Algorithm 3.3 can run simultaneously in each tier.

Algorithm 3.3 Approximate Algorithm for VMAC-SU

1: Set βmin = 0, βmax = 1.
2: Use bisection in [βmin, βmax] to solve CSU (β) = C.

3: Set qi =
β

1−βσ
2
i , and Ci = log

(
1−β
β SNRi +

1
β

)
.

We point out here that practical heterogeneous network may have other types of fronthaul structure.

For instance, in practical implementation the pico-BSs may not have direct fronthaul links to the CP,

but may connect to the macro-BSs first then to the CP. In this case, the fronthaul constraints can be

formulated as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
i∈Sm

log

(
1 +

∑L
j=1 Pj |hij|2+σ2

i

qi

)
≤ C̃m∑

i∈Sp

log

(
1 +

∑L
j=1 Pj |hij |2+σ2

i

qi

)
≤ C̃p

C̃m + C̃p ≤ C, C̃p ≤ Cp

(3.33)

where the optimization variables are {qi}, C̃m and C̃p. Here Cp is the sum-capacity constraint for the

fronthaul links connecting pico-BSs to the macro-BSs, and C is the total sum fronthaul constraint for

both pico-BSs and macro-BSs. In this case, the fronthaul constraints for macro-BSs and pico-BSs are

coupled together. However, Algorithm 3.3 can be still be helpful in finding the approximately optimal

quantization noise levels. Specifically, for each fixed pair of C̃m and C̃p, Algorithm 3.3 can be used to

find the qi’s for the macro-BSs and the pico-BSs respectively. The problem is now simplified to finding

the optimal partition of C between C̃m and C̃p.

3.5 Simulations

3.5.1 Multicell Network

In this section, the performances of the VMAC-WZ and VMAC-SU schemes with different quantization

noise level optimization strategies are evaluated in a wireless cellular network setup with 19 cells wrapped

around, 3 sectors per cell, and 20 users randomly located in each sector. The central 7 BSs (i.e., 21

sectors) form a C-RAN cooperation cluster, where each BS is connected to the CP with noiseless fronthaul

link with a sum capacity constraint across the 7 BSs. The users are associated with the sector with the

strongest channel. Round-robin user scheduling is used on a per-sector basis. Perfect channel estimation

is assumed, and the CSI is made available to all BSs and to the CP. In the simulation, fixed transmit

power of 23dBm is used at all the mobile users. Various algorithms are run on fixed set of channels.

Detailed system parameters are outlined in Table 3.5.1.

In the simulation, weighted rate-sum maximization is performed over the quantization noise levels,

with weights equal to the reciprocal of the exponentially updated long-term average rate. In the imple-

mentation of VMAC schemes, successive interference cancelation (SIC) decoding is used at the CP. The

decoding order of the users is determined by their weights, i.e., the user with high weight is decoded last.

The baseline system is the conventional cellular networks without joint multicell processing at the CP.

Cumulative distribution function (CDF) of the user rates is plotted in order to visualize the performance
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Table 3.1: Multicell Network System Parameters

Cellular Layout Hexagonal, 19-cell, 3 sectors/cell
BS-to-BS Distance 500 m
Frequency Reuse 1

Channel Bandwidth 10 MHz
Number of Users per Sector 20

Total Number of Users 420
User Transmit Power 23 dBm

Antenna Gain 14 dBi
SNR Gap (with coding) 6 dB

Background Noise −169 dBm/Hz
Noise Figure 7 dB

Tx/Rx Antenna No. 1
Distance-dependent Path Loss 128.1 + 37.6 log10(d)

Log-normal Shadowing 8 dB standard deviation
Shadow Fading Correlation 0.5

Cluster Size 7 cells (21 sectors)
Scheduling Strategy Round-robin

Figure 3.2: Cumulative distribution of user rates with the VMAC-WZ scheme

of various schemes.

Fig. 3.2 compares the performance of the baseline system with the VMAC-WZ scheme under the

sum fronthaul capacities of 120Mbps per macro-cell (40Mbps per sector) and 270Mbps per cell (90Mbps

per sector). The baseline system implements local decoding at the BSs without fronthaul capacity

limit. The VMAC-WZ scheme is implemented with two choices of quantization noise levels: the ap-

proximately optimal qi proportional to the background noise level as given by Algorithm 3.2 (labeled

as “appro. opt. q”) and the optimal qi given by Algorithm 3.1 (labeled as “optimized q”). It is shown

that the VMAC-WZ schemes significantly outperform the baseline system. The figure also shows that

setting qi to be proportional to the background noise level is indeed approximately optimal, especially

when C is large. This confirms our earlier theoretical analysis on the approximately optimal qi.

The VMAC schemes considered in this chapter is superior to the per-BS SIC scheme considered
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Figure 3.3: Performance comparison of the VMAC-WZ scheme with the per-BS interference cancellation
scheme.

Figure 3.4: Cumulative distribution of user rates with the VMAC-SU scheme

in [34]. To illustrate this point, Fig. 3.3 compares the performance of the VMAC-WZ scheme under

the approximately optimal qi with the per-BS SIC scheme of [34] (labeled as “Per-BS SIC”). For fair

comparison, we run the simulation over the users in the 7-cell cluster only, and ignore the out-of-cluster

interference, which is the case considered in [34]. The figure shows that significant gain can be obtained

by the VMAC-WZ scheme over the per-BS successive cancellation scheme.

Fig. 3.4 shows the CDF curves of user rates for the VMAC-SU scheme with three choices of quanti-

zation noise levels: the quantization noise levels given by allocating the fronthaul capacity equally across

the BSs (labeled as “uniform fronthaul”), the approximately optimal qi proportional to the background

noise as given by Algorithm 3.3 (labeled as “approx. opt. q”), and the optimal qi derived from the
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fronthaul capacity allocation formulation of the problem (labeled as “optimized q”). It can be seen that

VMAC with single-user compression also significantly improves the performance of baseline system and

that the approximately optimal qi is near optimal, especially when C is large. The figure also shows

that allocating fronthaul capacity uniformly across the BSs is strictly suboptimal.

To further compare the performance of the VMAC-SU scheme with different choices of quantization

noise levels, Fig. 3.5 plots the average per-cell sum rate of the baseline and the VMAC-SU schemes as a

function of the fronthaul capacity. The figure clearly shows the advantage of optimizing the quantization

noise levels (or equivalently the allocation of fronthaul capacities). For example, to achieve 80Mbps per-

cell sum rate, we need 200Mbps sum fronthaul if fronthaul capacities are allocated uniformly, 170Mbps

sum fronthaul if qi is chosen to be proportional to the background noise, and 150Mbps sum fronthaul if

qi is optimized. Thus, the optimization of the quantization noise level can save up to 25% in fronthaul

capacity.

Further, it can be seen from Fig. 3.5 that under infinite sum fronthaul, the achieved per-cell sum

rate saturates and approaches about 115Mbps for this cellular setting. But when the quantization noise

level is optimized, a finite sum fronthaul capacity at about 200Mbps is already sufficient to achieve

about 100Mbps user sum rate, which is 90% of the full benefit of uplink network MIMO. Note that

the performance gap between the approximately optimal qi and the optimal qi becomes smaller as the

sum fronthaul capacity increases, confirming the approximate optimality of qi = ασ2
i in the high SQNR

regime.

Figure 3.5: Per-cell sum rate vs. average per-cell fronthaul capacity of the VMAC-SU scheme.

Fig. 3.6 compares the performance of Wyner-Ziv coding and single-user compression for the VMAC

scheme. It is observed that Wyner-Ziv coding is superior to single-use compression. However, as the

sum fronthaul capacity becomes larger, the gain due to Wyner-Ziv coding diminishes.

3.5.2 Multi-Tier Heterogeneous Network

The performance of the VMAC-SU scheme is further evaluated for a two-tier heterogeneous network

with 7 macro-cells wrapped around, 3 sectors per cell, 3 pico BSs randomly located in each sector, and
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Figure 3.6: Comparison of the VMAC-SU and VMAC-WZ schemes

Table 3.2: Heterogeneous Network Channel Parameters

Cellular Layout Hexagonal, wrapped around
BS-to-BS Distance 500 m

Number of Macro Cells 7 cells, 3 sectors/cell
Number of Pico Cells 3 pico cells per macro sector
Frequency Reuse 1

Channel Bandwidth 10 MHz
Number of Users per

Macro Sector 20
User Transmit Power 23 dBm

Antenna Gain 14 dBi
SNR Gap (with coding) 6 dB

Background Noise −169 dBm/Hz
Noise Figure 7 dB

Pico BS Antenna Pattern Omni-directional
Tx/Rx Antenna No. 1

Path Loss Macro to User 128.1 + 37.6 log10(d)
Path Loss Pico to User 140.7 + 36.7 log10(d)

8 dB standard deviation
Log-normal Shadowing for macro-user link;

4 dB for pico-user link
Shadow Fading Correlation 0.5

Cluster Size 1 macro cell and 9 pico cells
Min. Dist. between BSs 75 m
Scheduling Strategy Round-robin

20 mobile users per macro-cell sector. The cellular topology is shown in Fig. 3.7. Each user establishes

connection with the macro/pico BS with the highest received SNR. Note that the number of users in

each pico/macro-cell is not fixed. On average there are 8 users per macro-cell sector and 4 users per

pico-cell. In this network, every macro-cell forms a C-RAN cluster, consisting of 3 macro-sectors and

9 pico-cells. The macro BSs and pico BSs are subject to different sum fronthaul capacity constraints.

Specifically, the sum fronthaul capacity is set to be 189Mbps for the 3 macro-BSs and 81Mbps for the 9
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Figure 3.7: A picocell network topology with 7 cells, 3 sectors per cell, and 3 pico base-stations per
sector placed randomly.

Figure 3.8: Cumulative distribution of user rates in the picocell network where the 3 macro-BSs and 9
pico-BSs within each 3-sector macrocell form a cluster. The VMAC-SU scheme is applied and the sum
fronthaul constraints for macro and pico BSs are 189Mpbs and 81Mpbs per cluster, respectively.

pico BSs. Perfect CSI is made available to all the BSs and to the CP. System parameters are outlined

in Table 3.2.

Fig. 3.8 shows the CDF plots of user rates achieved by the baseline scheme and the VMAC-SU

scheme. It is clear that the C-RAN architecture significantly improves upon the baseline, more than

doubling the 50-percentile rate. The optimization of the quantization noise level is important, as a naive

uniform fronthaul allocation only achieves half of the potential gain for C-RAN. Finally, setting the

quantization noise level to be proportional to the background noise is indeed approximately optimal. In

this multi-tier heterogeneous network case, the proportionality constant is set independently for each

tier using Algorithm 3.3.
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3.6 Summary

This chapter studies an uplink C-RAN model where the BSs within a cooperation cluster are connected

to a cloud-computing based CP through noiseless fronthaul links of limited sum capacity. We employ two

VMAC schemes where the BSs use either Wyner-Ziv compression or single-user compression to quantize

the received signals and send the compressed bits to the CP. At the CP, quantization codewords are

first decoded; subsequently the user messages are decoded as if the users form a virtual multiple-access

channel.

The main findings of the chapter are concerned with efficient optimization of the quantization noise

levels for both VMAC-WZ and VMAC-SU. We propose an alternating optimization algorithm for VMAC-

WZ and a fronthaul capacity allocation formulation for VMAC-SU. More importantly, it is observed that

setting the quantization noise levels to be proportional to the background noise levels is approximately

optimal. This leads to efficient algorithms for optimizing the quantization noise levels, or equivalently,

for allocating the fronthaul capacities.

From an analytic point of view, this chapter shows that setting quantization noise levels to be

proportional to the background noise levels is near optimal for maximizing the sum rate when the

system operates in the high SQNR regime. With such a choice of quantization noise levels, the VMAC-

WZ scheme can achieve the sum capacity of the uplink C-RAN model to within a constant gap. A similar

constant-gap result is also obtained for VMAC-SU under a diagonally dominant channel condition. From

a numerical perspective, simulation results confirm that the proposed VMAC schemes can significantly

improve the performance of wireless cellular systems. The improvement is maximized with optimized

quantization noise levels or equivalently optimized fronthaul capacity allocations. The near optimal

choice of quantization noise levels indeed performs very close to the optimal one over the SQNR region

of practical interest.
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Chapter 4

Joint Beamforming and

Compression for Uplink MIMO

C-RAN

4.1 Introduction

In the previous chapter, we study the optimal fronthaul compression for the VMAC scheme in SISO

uplink C-RAN under a sum fronthaul constraint. In this chapter, we further consider the problem of

transmit beamforming and fronthaul design for the MIMO uplink C-RAN with individual fronthaul

capacity constraints. The MIMO uplink C-RAN architecture is repeated Fig. 4.1 for convenience of

discussion, where multi-antenna mobile users communicate with the CP with multi-antenna BSs serving

as relay nodes. The BSs are connected with the CP via digital fronthaul links with finite capacities.

We consider the VMAC scheme, in which the BSs quantize the received signals using either single-user

compression or Wyner-Ziv coding and send the compressed bits to the CP. The CP performs successive

decoding to decode the quantization codewords first, then the user messages sequentially. Under the

VMAC scheme, this chapter studies the optimization of the transmit beamforming vectors and quan-

tization noise covariance matrices for maximizing the weighted sum rate of the C-RAN system. Being

different from the conventional multicell cellular systems, in which the optimal transmit beamforming

only depends on the interfering signal strength and the channel gain matrices, in C-RAN, the finite

fronthaul capacity also needs to be taken into account in the beamforming design. This chapter pro-

poses a novel weighted minimum-mean-square-error successive convex approximation (WMMSE-SCA)

algorithm to find the optimal transmit beamformers and quantization noise covariance matrices for max-

imizing the weighted sum rate of C-RAN. Moreover, a simple separate design consisting of optimizing

transmit beamformers for the Gaussian vector multiple-access channel and per-antenna scalar quantiz-

ers with uniform quantization noise levels across the antennas at each BS is also developed, under the

assumption that the signal-to-quantization-noise ratio (SQNR) is high and successive interference can-

cellation (SIC) is applied at the receiver. Numerical simulations show that the proposed separate design

already performs very close to the optimized joint design in the SQNR regime of practical interest.

This chapter considers two different fronthaul compression strategies for C-RAN, namely single-user

46
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Figure 4.1: An uplink MIMO C-RAN system with capacity-limited fronthaul

compression andWyner-Ziv coding. In single-user compression, which is also referred to as point-to-point

compression in the literature [58], each BS uses vector quantization to compress the received signals but

ignores the correlation between the received signals across different BSs. In contrast, Wyner-Ziv coding

fully utilizes the correlation of the received signals for higher compression efficiency, thereby achieving

better overall performance. The optimization strategy proposed in this chapter is first developed for

single-user compression, then for the more complex Wyner-Ziv coding, assuming a heuristic ordering

for decompression of the quantized signals at the BSs. The performance of the VMAC schemes with

single-user compression and Wyner-Ziv coding are evaluated for practical multicell networks under linear

minimum-mean-square-error (MMSE) receiver and SIC receiver respectively. It is shown that the im-

plementation of SIC receiver significantly improves the performance achieved by linear MMSE receiver

under both single-user compression and Wyner-Ziv coding. Furthermore, although single-user compres-

sion with SIC receiver can already realize majority of the benefit brought by the C-RAN architecture,

Wyner-Ziv coding can further improve upon single-user compression when the fronthaul capacity is

limited.

To precisely quantify the advantage of the C-RAN architecture, this chapter further evaluates the

performance of optimized beamforming and fronthaul compression under two different types of BS clus-

tering strategies: disjoint clustering and user-centric clustering. In disjoint clustering scheme, the entire

network is divided into non-overlapping clusters and the BSs in each cluster jointly serve all the users

within the coverage area [69]. In user-centric clustering, each user is served by an individually selected

subset of neighboring BSs; different clusters for different users may overlap. The performance of user-

centric clustering has been evaluated for the downlink of cooperative cellular networks [70] and C-RAN

systems [71]. This chapter further shows numerically that in uplink C-RAN, with optimized beamform-

ing and fronthaul compression, the user-centric clustering strategy significantly outperforms the disjoint

clustering strategy, because the cell edges are effectively eliminated.

4.1.1 Related Work

One of the main issues in the implementation of C-RAN is how to optimally utilize the capacity-limited

fronthaul links to efficiently reap the benefit of multicell processing. Substantial research works have

made progress towards this direction [12, 13, 34, 39]. The compress-and-forward relaying scheme for the
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uplink C-RAN model is related to the noisy network coding scheme in information theory literature [15,

16], but noisy network coding involves high-complexity joint decoding at the decoder. In [38], a virtual

multiple access channel (VMAC) scheme, which is a compress-and-forward strategy based on successive

decoding, is proposed for the single-input single-output (SISO) C-RAN architecture. As compared

to the noisy network coding scheme, the VMAC scheme has lower decoding complexity and shorter

decoding delay, which makes it more desirable for practical implementation. Furthermore, it is shown

in [35] that with Wyner-Ziv coding the successive decoding based VMAC scheme actually achieves the

same maximum sum rate as noisy network coding for the uplink C-RAN model under a sum fronthaul

constraint.

This chapter studies the linear transceiver and fronthaul compression design in the VMAC scheme

for the uplink multiple-input-multiple-output (MIMO) C-RAN model. As a generalization of [38] which

considers the SISO case only, this chapter considers the MIMO case where both the users and the BSs

are equipped with multiple antennas. The main difference between the SISO case and the MIMO case is

the impact of transmitter optimization at the user terminals. In the SISO case, since most of the intra-

cluster interference is already nulled by multicell decoding, it is near optimal for the users to transmit

at their maximum powers. In the MIMO case, the users are capable of doing transmit beamforming, so

the optimal transmit beamforming design is more involved.

The fronthaul compression problem for the uplink C-RAN model has been considered extensively in

the literature. Various algorithms such as alternating convex optimization [38], gradient projection [19],

and the robust fronthaul compression approach [20] have been developed for maximizing the (weighted)

sum rate under the fronthaul constraints. All of these algorithms focus only on the optimization of

quantization noise covariance matrices across the BSs, with fixed transmit beamformers. This chapter

goes one step further by considering the joint transmit beamformer and quantization noise covariance

matrix optimization problem. Accounting for both the transmit beamforming and the quantization

design problem together in the optimization framework is nontrivial, because the two are coupled through

the fronthaul constraints. To tackle this problem, this chapter proposes a novel WMMSE-SCA algorithm

for efficiently finding a local optimum solution to the weighted sum rate maximization problem. The

proposed algorithm integrates the well-known WMMSE beamforming design strategy [72, 73], with the

successive convex approximation technique [63, 64], to arrive at a stationary point of the maximization

problem. The performance of optimized beamforing vectors and quantization noise covariance matrices

for both Wyner-Ziv coding and single-user compression are evaluated under practical multicell networks

with different receive beamforming schemes, i.e., the linear receiver and the SIC receiver. Simulation

results show that the performance improvement of the SIC receiver as compared to the linear receiver

is much larger than that of Wyner-Ziv coding as compared to single-user compression. Most of the

performance gain brought by C-RAN can thus be obtained by single-user compression together with SIC

receiver.

4.1.2 Chapter Organization

The rest of the chapter is organized as follows. Section 4.2 introduces the system model and the VMAC

scheme. Section 4.3 considers the joint design of beamforming and fronthaul compression under single-

user compression, where a novel WMMSE based successive convex optimization algorithm is proposed.

The proposed joint design scheme is developed further in Section 4.4 for maximizing weighted sum rate

under Wyner-Ziv coding. Section 4.5 is devoted to a low-complexity separate design, which is shown to
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be near-optimal at high SQNR regime. The proposed optimization algorithms are evaluated numerically

for practical multicell and multicluster networks in Section 4.6 and concluding remarks are made in in

Section 4.7.

4.2 Preliminaries

4.2.1 System Model

This chapter considers the uplink C-RAN, where K multi-antenna mobile users communicate with a CP

through L multi-antenna BSs serving as relay nodes, as shown in Fig. 4.1. The noiseless fronthaul links

connecting the BSs with the CP have per-link capacities C�. Each user terminal is equipped with M

antennas; each BS is equipped with N antennas. Furthermore, it is assumed that perfect channel state

information (CSI) is made available to all the BSs and to the CP.

We consider the VMAC scheme [38] applied for such a C-RAN system, in which the BSs quantize the

received signals using either Wyner-Ziv coding or single-user compression, then forwards the compressed

bits to the CP for decoding. In single-user compression, the compression process only involves the

conventional vector quantizers, one for each BS, while in Wyner-Ziv coding, the correlation between the

received signals across the BSs are fully utilized for higher compression efficiency. At the CP side, a

two-stage successive decoding strategy is employed, where the quantization codewords are first decoded,

and then the user messages are decoded sequentially.

Define H�,k as the N×M complex channel matrix between the kth user and the �th BS. It is assumed

that each user intends to transmit d parallel data streams to the CP. Let Vk ∈ C
M×d denote the linear

transmit beamfomer that user k utilizes to transmit message signal sk ∈ Cd×1 to the central receiver.

We assume that each message signal sk intended for user k is taken from a Gaussian codebook so that we

have sk ∼ CN (0, I). Then the transmit signal at user k is given by xk = Vksk with E[xkx
†
k] = VkV

†
k.

The transmit beamformers are subjected to per-user power constraints, i.e., Tr
(
VkV

†
k

)
≤ Pk for k ∈ K.

The received signal at BS �, y�, can be expressed as

y� =
K∑

k=1

H�,kVksk + z�, ∀ � ∈ L, (4.1)

where z� ∼ CN (0,Σ�) represents the additive Gaussian noise for BS �. Assuming Gaussian quantization

test channel, the quantized received signal ŷ� for the �th BS is given by

ŷ� = y� + q� (4.2)

where q� ∼ CN (0,Q�) represents the Gaussian quantization noise for the �th BS.

4.2.2 Achievable Rate of the VMAC scheme

The rate region of the VMAC scheme is characterized by that of a multiple-access channel, in which

multiple users send information to a common CP. Following the results in [38], assuming that the linear

MMSE receiver is applied at the CP, the transmission rate Rk for user k for the VMAC scheme is given

by

Rk ≤ I(Xk;Y1, . . . ,YL) = log
∣∣∣I+V†

kH
†
L,kD

−1
k HL,kVk

∣∣∣ (4.3)
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where

Dk = DLE
k =

K∑
j �=k

HL,jVjV
†
jH

†
L,j +Σ+Q, (4.4)

with Σ = diag
(
{Σ�}L�=1

)
and Q = diag

(
{Q�}L�=1

)
. To achieve higher throughput, the SIC scheme can

also be applied combined with the MMSE receiver. For simplicity, we here assume a decoding ordering of

user messages 1, 2, . . . ,K, while the case of an arbitrary decoding order of user messages can be obtained

by simple analogy. The matrix Dk = DLE
k in (4.3) is replaced by DSIC

k expressed as

Dk = DSIC
k =

K∑
j>k

HL,jVjV
†
jH

†
L,j +Σ+Q. (4.5)

The compression rates at the BSs should also satisfy the fronthaul link capacity constraints. Using

information-theoretic formulation, the fronthaul constraints under single-user compression can be written

as

I
(
Y�; Ŷ�

)
≤ C�, ∀ � ∈ L. (4.6)

Evaluating the above mutual information expression with Gaussian input and Gaussian quantization

noise, the fronthaul constraint (4.6) becomes [36]

log

∣∣∣∑K
k=1 H�,kVkV

†
kH

†
�,k +Σ� +Q�

∣∣∣
|Q�|

≤ C�, (4.7)

for all � = 1, 2, . . . , L. When Wyner-Ziv coding is implemented at BSs, the fronthaul constraints are

given by the following mutual information expressions [35, 37]

I
(
YS ; ŶS |ŶSc

)
≤

∑
�∈S

C�, ∀ S ⊆ L. (4.8)

Utilizing the chain rule on mutual information and the Gaussian assumption, one can express the fron-

thaul constraint (4.8) for Wyner-Ziv coding as follows,

log

∣∣∣∣ K∑
k=1

HL,kVkV
†
kH

†
L,k + diag ({Σ� +Q�}�∈L)

∣∣∣∣∣∣∣∣ K∑
k=1

HSc,kVkV
†
kH

†
Sc,k + diag ({Σ� +Q�}�∈Sc)

∣∣∣∣ −
∑
�∈S

log |Q�| ≤
∑
�∈S

C�, ∀ S ⊆ L. (4.9)

4.3 Joint Beamforming and Compression Design under Single-

User Compression

4.3.1 Weighted Sum Rate Maximization

This section investigates the joint beamforming and fronthaul compression design for the VMAC scheme

with single-user compression. As shown in the achievable rate expression (4.3) and the fronthaul con-

straint expression (4.7), the beamforming vectors and quantization noise covariance matrices are coupled,

and the two together determine the overall performance of a C-RAN system. To characterize the tradeoff

between the achievable rates for the users and the system resources, we formulate the following weighted
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sum rate maximization problem:

max
Vk,Q�

K∑
k=1

μk log
∣∣∣I+V†

kH
†
L,kD

−1
k HL,kVk

∣∣∣ (4.10a)

s.t. Dk = DLE
k or Dk = DSIC

k ,

log

∣∣∣∑K
k=1 H�,kVkV

†
kH

†
�,k +Σ� +Q�

∣∣∣
|Q�|

≤ C�, ∀� ∈ L, (4.10b)

Q� � 0, ∀� ∈ L,
Tr

(
VkV

†
k

)
≤ Pk, ∀k ∈ K

where μk’s are the weights representing the priorities associated with the mobile users typically deter-

mined from upper layer protocols. When SIC is implemented, to maximize the weighed sum rate, the

user with larger weight should be decoded last. Without loss of generality, we assume 0 ≤ μ1 ≤ μ2 ≤
· · · ≤ μK , which results in the decoding order of user messages 1, 2, . . . ,K.

Due to the non-convexity of both the objective function and the fronthaul capacity constraints in

problem (4.10), finding the global optimum solution of (4.10) is challenging. We point out here that the

present formulation (4.10) actually implicitly includes the user scheduling strategy. More specifically,

one can consider a weighted sum rate maximization problem over all the users in the network, where

the beamformers for the users are set to be the zero vector if they are not scheduled. For simplicity

in the following development, we focus on the active uses only and assume that the user scheduling is

done prior to solving problem (4.10). Implicit scheduling is discussed later in the simulation part of the

chapter.

4.3.2 The WMMSE-SCA Algorithm

In this section, we propose a novel algorithm to find a stationary point of the problem (4.10). The

main difficulty in solving (4.10) comes from the fact that the objective function and fronthaul capacity

constraints are both nonconvex functions with respect to the optimization variables. Inspired by the

recent work of using the WMMSE approach for beamforming design [72, 73], we first reformulate the

objective function in problem (4.10) as a convex function with respect to the MMSE matrix given by

the user’s target signal sk and decoded signal ŝk. We then linearize the convex objective function and

the compression rate expressions in the fronthaul constraints of (4.10) to obtain a convex approximation

of the original problem. Finally we successively approximate the optimal solution by optimizing this

convex approximation. The idea of convex approximation is rooted from modern optimization techniques

including block successive minimization method and minorize-maximization algorithm, which have been

previously applied for solving related problems in wireless communications [70, 74].

By applying Lemma 3.1 to the first log-determinant term in the fronthaul constraint expression (4.7)

or (4.10b) and by setting

Ω� =
K∑

k=1

H�,kVkV
†
kH

†
�,k +Σ� +Q�, (4.11)
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we can approximate the fronthaul constraint (4.7) or (4.10b) with the following convex constraint:

log |Γ�|+Tr

(
Γ−1
�

(
K∑

k=1

H�,kVkV
†
kH

†
�,k +Σ� +Q�

))
− log |Q�| ≤ C� +N (4.12)

for � = 1, 2, . . . , L. It is not hard to see that the fronthaul constraint (4.7) or (4.10b) is always feasible

when the convex constraint (4.12) is feasible. The two constraints are equivalent when

Γ∗
� =

K∑
k=1

H�,kVkV
†
kH

†
�,k +Σ� +Q�. (4.13)

Now we approximate the objective function (4.10a) using the WMMSE approximation. Let Uk ∈
C

NL×d be the linear receiver applied at the CP for recovering sk. The transmission rate Rk in (4.3) can

be expressed as the following [72] [73],

Rk = max
Uk

log |E−1
k | (4.14)

where

Ek = (I−U†
kHL,kVk)(I−U†

kHL,kVk)
† +U†

k

⎛⎝ K∑
j �=k

HL,jVjV
†
jH

†
L,j +Σ+Q

⎞⎠Uk. (4.15)

By applying Lemma 3.1 again, we rewrite rate expression (4.14) as

Rk = max
Wk,Uk

(log |Wk| − Tr(WkEk) + d) (4.16)

where Wk is the weight matrix introduced by the WMMSE method. The optimal Wk is given by

W∗
k = E−1

k = I+H†
L,kV

†
kU

∗
k, (4.17)

where U∗
k is the MMSE receive beamformer given by

U∗
k =

⎛⎝∑
j �=k

HL,jVjV
†
jH

†
L,j +Σ+Q

⎞⎠−1

HL,kVk. (4.18)

Using (4.16) and (4.12) to replace the objective function and the fronthaul constraints in problem

(4.10), we reformulate the weighted sum-rate maximization problem as follows

max
Vk,Q�,Uk,

Wk,Γ�

K∑
k=1

μk (log |Wk| − Tr(WkEk)) + ρ
L∑

�=1

‖Γ� −Ω�‖2F (4.19)

s.t. log |Γ�|+Tr
(
Γ−1
� Ω�

)
− log |Q�| ≤ C′

�, ∀� ∈ L,
Q� � 0, ∀� ∈ L,

Tr
(
VkV

†
k

)
≤ Pk, ∀k ∈ K,

where Ω� =
∑K

k=1 H�,kVkV
†
kH

†
�,k +Σ� +Q�, ρ is some positive constant, and C′

� = C� +N . Note that
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Algorithm 4.1 WMMSE-SCA Algorithm

1: Initialize Q� and Vk such that Tr
(
VkV

†
k

)
= Pk.

2: repeat
3: Γ� ←

∑K
k=1 H�,kVkV

†
kH

†
�,k +Σ� +Q�.

4: Uk ←
(∑

j �=k HL,jVjV
†
jH

†
L,j +Σ+Q

)−1

HL,kVk.

5: Wk ← I+H†
kV

†
kUk.

6: Fix Γ�, Uk, and Wk, solve the convex optimization problem (4.20). Set (Vk,Q�) to be its optimal
solution.

7: until convergence

the last term in the objective function which involves a summation of Frobenius norms is a quadratic

regularization term. It makes the optimization problem (4.19) strictly convex with respect to each

optimization variable.

It is easy to verify that problem (4.19) is convex with respect to any one of the optimization variables

when the other optimization variables are fixed. Specifically, when the other variables are fixed, the

optimal values of Γ�, Wk, and Uk are given by equations (4.13), (4.17), and (4.18) respectively. When

Γ�, Uk, and Wk are fixed, the optimal values of Vk and Q� are solutions to the following optimization

problem:

min
Vk,Q�

K∑
k=1

μkTr(WkEk) + ρ

L∑
�=1

‖Γ� −Ω�‖2F (4.20)

s.t. Tr
(
Γ−1
� Ω�

)
− log |Q�| ≤ C′

� − log |Γ�| , ∀� ∈ L,

Q� � 0, ∀� ∈ L,
Tr

(
VkV

†
k

)
≤ Pk, ∀k ∈ K,

where Ω� =
∑K

k=1 H�,kVkV
†
kH

†
�,k + Σ� + Q�. The above problem is convex with respect to Vk and

Q�, and can be solved efficiently with polynomial complexity. Standard convex optimization solver

such as CVX [75] can be used for solving problem (4.20) numerically. We summarize the proposed

WMMSE-SCA algorithm for single-user compression in Algorithm 4.1.

4.3.3 Convergence and Complexity Analysis

The WMMSE-SCA algorithm yields a nondecreasing sequence of objective values for problem (4.10). So

the algorithm is guaranteed to converge. Moreover, it converges to a stationary point of the optimization

problem. The convergence result is stated in Theorem 4.1.

Theorem 4.1 From any initial point (V
(0)
k ,Q

(0)
� ), the proposed WMMSE-SCA algorithm is guaranteed

to converge. The limit point (V∗
k,Q

∗
�) generated by the WMMSE-SCA algorithm is a stationary point of

the weighted sum-rate maximization problem (4.10).

Proof. See Appendix G.

We point out here that Theorem 4.1 can also be proved following a similar procedure as that for

demonstrating the convergence of WMMSE algorithm [73]. Specifically, it follows from the general op-

timization theory [76, Theorem 2.7.1] that the WMMSE-SCA algorithm, which is the block coordinate
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descent method applied to the reformulated problem (4.19), converges to a stationary point of (4.19).

Then one can show every stationary point of (4.19) is also a stationary point of the original maximization

problem (4.10), thereby establishing the claim in Theorem 4.1. However such a proof is not as simple

as the proof presented in this chapter which utilizes the convergence result of the successive convex

approximation algorithm [77]. We also emphasize the importance of the regularization term involving

sum of Frobenius norms in the objective function of (4.19). The regularization term makes the objec-

tive function in (4.19) a strongly convex function with respect to (Vk,Q�), therefore, guarantees the

convergence of Algorithm 4.1.

Assuming a typical network with K > L > N > M , the computational complexity of the proposed

WMMSE-SCA algorithm is dominated by the joint optimization of (Vk,Q�), i.e. Step 5 of Algorithm

4.1. Step 5 solves a convex optimization problem, which can be efficiently implemented by primal-dual

interior point method with approximate complexity of O
(
(KM + LN)3.5

)
[78]. Suppose that Algorithm

4.1 takes T total number of iterations to converge, the overall computational complexity of Algorithm

4.1 is therefore O
(
(KM + LN)3.5T

)
.

4.4 Joint Beamforming and Compression Optimization under

Wyner-Ziv coding

In single-user compression, the compression procedures across different BSs take place independently

and in parallel. This separate processing across the BSs neglects the key fact that the received signals

y� in (4.2) are statistically correlated across the BS index �, since they are noisy observations of the

same transmitted signals xk. Based on this fact, Wyner-Ziv coding, which jointly processes the signals

received at the CP, is expected to be superior to the pre-link single-user compression in utilizing the

limited fronthaul capacities. With fixed transmitters, the advantages of Wyner-Ziv coding has been

demonstrated in [38, 58]. We take one step further in this section to study the problem of jointly

optimizing transmit beamforming vectors and Wyner-Ziv quantization noise covariance matrices for the

VMAC scheme in uplink C-RAN.

In the implementation of Wyner-Ziv coding, we decompress the quantization codeword ŷ� sequentially

from one BS to the other. To this end, we need to determine a decompression order on the BS indices

{1, 2, . . . , L}. The decompression order generally affects the achievable performance of the VMAC scheme

and should be optimized. However, in order to determine the optimal order that results in the largest

weighted sum rate (or the maximum network utility) for the C-RAN model shown in Fig. 4.1, we need

to exhaustively search over L! different decoding orders, which is impractical for large L. To tackle

this problem, we propose a heuristic approach to select the decompression order of ŷ�’s. The proposed

scheme decompresses first the signals from the BS with larger value of

C� − log
∣∣∣H�,KH

†
�,K +Σ�

∣∣∣ , ∀� ∈ L. (4.21)

The rationale of this approach is to let signals from the BSs with either larger fronthaul capacity or

lower received signal power be recovered first, then the recovered signals can sever as side information in

helping the decompression of other BSs. This decompression order attempts to make the quantization

noise levels across the BSs small. It is shown by simulation in the later section that the proposed heuristic

approach works rather well for implementing Wyner-Ziv coding in practical uplink C-RAN when the
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fronthaul capacities or the received signal powers at the BSs are different.

Assume that π is the decompression order of ŷ� given by the heuristic approach. Denote the index

set by T� = {π(1), . . . , π(�)}, where π(�) represents the �th component in π. Let QT�
= diag ({Q�}�∈T�

).

The weighted sum rate maximization problem under Wyner-Ziv coding can be formulated as follows:

max
Vk,Q�

K∑
k=1

μk log
∣∣∣I+V†

kH
†
L,kD

−1
k HL,kVk

∣∣∣ (4.22)

s.t. log
|ΥT�

+QT�
|∣∣ΥT�−1

+QT�−1

∣∣ − log |Qπ(�)| ≤ Cπ(�), ∀� ∈ L,

Q� � 0, ∀� ∈ L,

Tr
(
VkV

†
k

)
≤ Pk, ∀k ∈ K,

where ΥT�
=

∑K
k=1 HT�,kVkV

†
kH

†
T�,k

+ diag ({Σ�}�∈T�
), μk’s are the weights associated with the users,

and Dk is given by either equation (4.4) for the MMSE receiver or equation (4.5) for the SIC receiver.

The above problem is again non-convex, which makes finding its global optimum challenging. To

efficiently solve problem (4.22), we again utilize the successive convex approximation approach proposed

in the WMMSE-SCA algorithm. An obstacle to applying the convex approximation procedure directly

to problem (4.22) lies in the Wyner-Ziv fronthaul constraint, which contains three log-determinant

functions. To facilitate the utilization of the WMMSE-SCA algorithm, we reformulate problem (4.22)

as an equivalent problem as follows,

max
Vk,Q�

K∑
k=1

μk log
∣∣∣I+V†

kH
†
L,kD

−1
k HL,kVk

∣∣∣ (4.23)

s.t. log |ΥT�
+QT�

| −
∑
�∈T�

log |Q�| ≤
∑
�∈T�

C�, ∀� ∈ L,

Q� � 0, ∀� ∈ L,

Tr
(
VkV

†
k

)
≤ Pk, ∀k ∈ K,

where ΥT�
=

∑K
k=1 HT�,kVkV

†
kH

†
T�,k

+ diag ({Σ�}�∈T�
). The advantage of reformulation (4.23) is that

it has similar format as (4.10), so the successive convex approximation procedure can again be used

directly. Similar to the single-user case, by approximating the objective function and the fronthaul

constraints in (4.23) with (3.9) and (4.16) respectively, problem (4.23) can be rewritten as

max
Vk,Q�,Uk,
Wk,ΣT�

K∑
k=1

μk (log |Wk| − Tr(WkEk)) + ρ
L∑

�=1

‖ΣT�
−ΩT�

‖2F (4.24)

s.t. log |ΣT�
|+Tr

(
Σ−1

T�
ΩT�

)
− log |QT�

| ≤ C′
T�
, ∀� ∈ L,

Q� � 0, ∀� ∈ L,

Tr
(
VkV

†
k

)
≤ Pk, ∀k ∈ K,

where ρ > 0, ΩT�
=

∑K
k=1 HT�,kVkV

†
kH

†
T�,k

+ diag ({Σ� +Q�}�∈T�
), and C′

T�
=

∑
�∈T�

(C� +N).

Clearly, the proposed WMMSE-SCA algorithm can be applied for solving the above optimization prob-

lem. We describe the beamforming and fronthaul compression scheme for Wyner-Ziv coding in Algorithm

4.2.
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Algorithm 4.2 Beamforming and Fronthaul Compression Optimization under Wyner-Ziv coding

1: Determine a decompression order π of ŷ�’s by the value of C� − log
∣∣∣H�,KH

†
�,K +Σ�

∣∣∣.
2: Solve the optimization problem (4.24) using Algorithm 4.1. Set (Vk,Q�) to be its optimal solution.

4.5 Separate Design of Beamforming and Compression

Although locally optimal transmit beamformers and quantization noise covariance matrices can be found

using the WMMSE-SCA algorithm for any fixed user schedule, user priority, and channel condition, the

implementation of WMMSE-SCA in practice can be computationally intensive, especially when the

channels are under fast fading or when the scheduled users in the time-frequency slots change frequently.

In this section, we aim at deriving near optimal transmit beamformers and quantization noise covariance

matrices in the high SQNR regime. The main result of this section is that a simple separate design which

involves optimizing transmit beamformers for the Gaussian vector multiple-access channel at the user

side and using scalar quantizers with uniform quantization noise levels across the antennas at each BS

is approximately optimal if an appropriate set of users are scheduled. This leads to an efficient way for

the transmit beamforming and fronthaul compression design in the practical uplink C-RAN systems.

4.5.1 Quantization Noise Design Under High SQNR

The proposed approximation scheme is derived by assuming that SIC is implemented at the central

receiver. Without loss of generality, let 0 = μ′
0 ≤ μ′

1 ≤ μ′
2 ≤ · · · ≤ μ′

K−1 ≤ μ′
K = 1 represent the user

weights μk normalized by their maximum value. With these weights, the users are decoded in the order

of 1, 2, . . . ,K. The decoded user messages facilitate the decoding of subsequent user messages by serving

as side information.

Denote the transmit signal covariance matrix for the jth user as Kj = VjV
†
j . Under single-user

compression, the weighted sum rate maximization problem can be formulated as follows,

max
Kj ,Q�

K∑
k=1

μ′
k log

∣∣∣∑K
j=k HL,jKjH

†
L,j +Σ+Q

∣∣∣∣∣∣∑K
j>k HL,jKjH

†
L,j +Σ+Q

∣∣∣ (4.25)

s.t. log

∣∣∣∑K
j=1 H�,jKjH

†
�,j +Σ� +Q�

∣∣∣
|Q�|

≤ C�, ∀� ∈ L,

Q� � 0, ∀� ∈ L,

Tr (Kj) ≤ Pj , ∀j ∈ K,

where Σ = diag
(
{Σ�}L�=1

)
and Q = diag

(
{Q�}L�=1

)
.

In the following, we provide a justification that the optimal quantization noise levels should be set to

be uniform across the antennas at each BS under high SQNR. Towards this end, we derive the Karush-

Kuhn-Tucker (KKT) condition for the optimization problem (4.25) under the high SQNR assumption.
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To obtain the KKT condition, form the Lagrangian

L(Kj ,Q�, λ�, νj) =
K∑

k=1

(
μ′
k − μ′

k−1

)
log

∣∣∣∣∣∣
K∑
j=k

HL,jKjH
†
L,j +Σ+Q

∣∣∣∣∣∣− log |Σ+Q|

−
L∑

�=1

λ� log

∣∣∣∣∣∣
K∑
j=1

H�,jKjH
†
�,j +Σ� +Q�

∣∣∣∣∣∣+
L∑

�=1

λ� log |Q�| −
K∑
j=1

νjTr (Kj) , (4.26)

where λ� is the Lagrangian dual variable associated with the �th fronthaul constraint, and νj is La-

grangian multiplier for the jth transmit power constraint.

Setting ∂L/∂Q� to zero, we obtain the optimality condition as follows,

K∑
k=1

(
μ′
k − μ′

k−1

)
F�

⎛⎝ K∑
j=k

HL,jKjH
†
L,j +Σ+Q

⎞⎠−1

FT
� − λ�

⎛⎝ K∑
j=1

H�,jKjH
†
�,j +Σ� +Q�

⎞⎠−1

− (Σ� +Q�)
−1

+ λ�Q
−1
� = 0, (4.27)

where F� = [0, . . . ,0, IN ,0, . . . ,0] with only the �th N × N block being nonzero. It is easy to verify

that the above optimality condition can only be satisfied if 0 ≤ λ� < 1. Furthermore, if the overall

system is to operate at reasonably high spectral efficiency, the received signal-to-noise ratios (SNRs)

are likely to be high and the fronthaul capacities are likely to be large. In this case, we must have∑K
j=k HL,jKjH

†
L,j +Σ +Q � Σ+Q and

∑K
j=1 H�,jKjH

†
�,j +Σ� +Q� � Σ� +Q�. Under this high

SQNR condition,
(∑K

j=k HL,jKjH
†
L,j +Σ+Q

)−1

≈ 0 and
(∑K

j=1 H�,jKjH
†
�,j +Σ� +Q�

)−1

≈ 0.

Then the optimality condition becomes (Σ� +Q�)
−1 ≈ λ�Q

−1
� , i.e.,

Q� ≈
λ�

1− λ�
Σ� (4.28)

where λ� ∈ [0, 1) is chosen to satisfy the fronthaul capacity constraints for single-user compression.

Following the same analysis, similar conclusion can also be obtained under Wyner-Ziv coding.

The above result implies that scalar quantizers with uniform quantization noise levels across the

antennas at each BS are nearly optimal at high SQNR, although the quantization noise level may differ

from BS to BS depending on the background noise levels and the fronthaul constraints. Note that this

line of reasoning is very similar to the corresponding condition for the SISO case derived in Chapter 3.

4.5.2 Beamforming Design Under High SQNR

We next consider the optimal transmit beamforming and power allocation under high SQNR. Intuitively

speaking, for maximizing the sum rate, each user should align its signaling direction with the strongest

eigenmode of the effective channel and allocate power along this direction in a “water-filling” fashion.

For this, we need to whiten the combined quantization and background noise and interference, then

diagonalize the resulting channel to find its eigenmodes, and iteratively perform the water-filling process

among the users [57]. As we see from (4.28), at high SQNR, the optimal quantization noise covariance

matrices are proportional to the background noise covariance matrices. Further, if we choose d =

min{M,NL/G}, i.e., if we let the total number of user data streams be equal to the number of degrees
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of freedom in the system, then multiuser interference would be reasonably contained.

Based on the above intuition on beamforming design, we propose a simple beamforming design in

which each user selects its transmit beamformers by ignoring the affect of fronthaul capacity limitation.

Specifically, we consider the following weighted sum rate maximization problem for a Gaussian vector

multiple-access channel:

max
Kj

K∑
k=1

μ′
k log

∣∣∣∑K
j=k HL,jKjH

†
L,j +Σ

∣∣∣∣∣∣∑K
j>k HL,jKjH

†
L,j +Σ

∣∣∣ (4.29)

s.t. Tr (Kj) ≤ Pj , ∀j ∈ K,
Kj � 0, ∀j ∈ K,

It is easy to verify that the above optimization problem is convex, and it can be efficiently solved by the

interior-point method [79]. Given the optimum solution K∗
j to problem (4.29), each user can obtain the

optimal beamformers by performing eigenvalue decomposition on K∗
j . Let γi represent the ith largest

eigenvalue of K∗
j , and Ψi represent the normalized eigenvector corresponding to ith eigenvalue γi. Then

the optimal transmit beamforming matrix for user j is just

Vj =
d∑

i=1

√
Pkγi
ζd

Ψi (4.30)

where ζd =
∑d

i=1 γi represents the sum of d largest of eigenvalues K∗
j .

4.5.3 Separate Beamforming and Compression Design

The above beamforming strategy together with per-antenna scalar quantizer provide us a low-complexity

separate design for transmit beamforming and fronthaul compression. With single-user compression,

define

CSU (β�) = log

∣∣∣∣ K∑
k=1

H�,kVkV
†
kH

†
�,k + (1 + β�)Σ�

∣∣∣∣
|β�Σ�|

. (4.31)

With Wyner-Ziv coding, assuming without loss of generality a decoding order of ŷ� from 1 to L, define

CWZ(β1, . . . , βj) = log

∣∣∣∣ K∑
k=1

HTj,kVkV
†
kH

†
Tj,k

+ diag
(
{(1 + β�)Σ�}�∈Tj

)∣∣∣∣∣∣diag (
{β�Σ�}�∈Tj

)∣∣ (4.32)

where Tj = {1, . . . , j}. The separate transmit beamforming and fronthaul compression design scheme is

summarized as Algorithm 4.3.

There are two differences between the joint design scheme and the separate design scheme. First,

in the joint design, transmit beamforming are chosen to be fronthaul-aware, while the impact of limit

fronthaul is ignored in the separate design. Second, in the joint design, vector quantization is applied at

each BS while separate design adopts scalar quantization on each receive antenna of the BSs. It is shown

by simulation in later section that the separate design performs very well in the high SQNR regime. In

other regimes, the difference between the joint design and separate design represents a tradeoff between

complexity and performance in implementing uplink C-RAN.
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Algorithm 4.3 Separate Design

1: Solve the convex optimization problem (4.29) and set Kj to be its optimal solution.
2: Perform eigen-decomposition on Kj to obtain eigenvalues γi and eigenvectors Ψi. Set Vj =∑d

i=1

√
Pkγi

ζd
Ψi for j = 1, . . . ,K.

3: For � = 1, . . . , L, use bisection in [βmin, βmax] to solve for β� in CSU (β�) = C� for single-user

compression, or CWZ(β1, . . . , βj) =
∑j

�=1 C� for Wyner-Ziv coding.
4: Set Q� = β�Σ� for � = 1, . . . , L.

Table 4.1: Multicell Network System Parameters

Cellular Layout Hexagonal, 19-cell, 3 sectors/cell
BS-to-BS Distance 500 m
Frequency Reuse 1

Channel Bandwidth 10 MHz
Number of Users per Sector 20

Total Number of Users 420
Max Transmit Power 23 dBm

Antenna Gain 14 dBi
SNR Gap (with coding) 6 dB

Background Noise −169 dBm/Hz
Noise Figure 7 dB

Tx/Rx Antenna No. 2× 2
Distance-dependent Path Loss 128.1 + 37.6 log10(d)

Log-normal Shadowing 8 dB standard deviation
Shadow Fading Correlation 0.5

Cluster Size 7 cells (21 sectors)
Scheduling Strategy WMMSE based scheduling

4.6 Simulation Results

4.6.1 Single-Cluster Network

In this section, the performances of the proposed WMMSE-SCA schemes with different compression

strategies (i.e., Wyner-Ziv coding and single-user compression) and different receiving schemes (i.e.,

linear MMSE receiver and SIC receiver) are evaluated on a 19-cell 3-sector/cell wireless network setup

with center 7 cells (i.e., 21 sectors) forming a cooperating cluster. The users are randomly located and

associated with the strongest BS. The proposed WMMSE-SCA algorithm is applied to all the users

within the cluster, which automatically schedules the users with non-zero beamforming vectors. Each

BS is equipped with N = 2 antennas, each user is equipped with M = 2 antennas, and each user sends

one data stream (i.e., d = 1) to the CP. Perfect channel estimation is assumed, and the CSI is made

available to all BSs and to the CP. Various algorithms are run on fixed set of channels. Detailed system

parameters are outlined in Table 4.1.

Under single-user compression, Fig. 4.2 and Fig. 4.3 compare the performance of the WMMSE-SCA

and separate design schemes implemented either with SIC (labeled as “SIC receiver” in the figures) or

without SIC (labeled as “linear receiver” in the figures) at the receiver under two different fronthaul

constraints. It is shown that both the WMMSE-SCA scheme and the separate design scheme significantly

outperform the baseline scheme without multicell processing. Fig. 4.2 and Fig. 4.3 show that the SIC

receiver achieves significant gain as compared to the linear receiver. The performance improvement is

more significant for the users with low rate.
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Figure 4.2: Cumulative distribution of user rates with single-user compression for a 19-cell network with
center 7 cells forming a single cluster under the fronthaul capacity of 120Mbps per sector.

Figure 4.3: Cumulative distribution of user rates with single-user compression for a 19-cell network with
center 7 cells forming a single cluster under the fronthaul capacity of 320Mbps per sector.

To further compare the performance of the proposed two schemes, Fig. 4.4 plots the average per-

cell sum rate of the WMMSE-SCA scheme and the low-complexity separate design as a function of

the fronthaul capacity. As the fronthaul capacity increases, the performance gap between these two

schemes becomes smaller. This demonstrates the approximate optimality for separate design of transmit

beamforming and fronthaul compression in the high SQNR regime.

Fig. 4.5 and Fig. 4.6 show the CDF curves of user rates for the WMMSE-SCA scheme implemented

with four different choices of coding schemes: with either single-user or Wyner-Ziv compression at the

BSs and with either linear MMSE or SIC receiver at the CP. It can be seen from Fig. 4.5 that under
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Figure 4.4: Per-cell sum rate vs. average per-sector fronthaul capacity with linear receiver and with SIC
receiver for a 19-cell network with center 7 cells forming a single cluster.

Figure 4.5: Cumulative distribution of user rates with either single-user compression or Wyner-Ziv
coding for a 19-cell network with center 7 cells forming a single cluster under the fronthaul capacity of
120Mbps per sector.

the fronthaul capacity of 120Mbps, single-user compression with SIC receiver significantly improves the

performance of linear MMSE receiver. Further gain on performance can be obtained if one replaces

single-user compression by Wyner-Ziv coding. As the capacity of fronthaul increases to 320Mbps, as

shown in Fig. 4.6, the gain due to Wyner-Ziv coding becomes negligible. In this high fronthaul scenario,

SIC receiver still achieves a very large gain.

In order to quantify the performance gain brought by Wyner-Ziv coding and SIC receiver, Fig. 4.7

shows the average per-cell sum rate obtained by different schemes as the average capacity of fronthaul

increases. It is observed that, under fronthaul capacity of 320Mpbs, both SIC receiver and Wyner-Ziv
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Figure 4.6: Cumulative distribution of user rates with either single-user compression or Wyner-Ziv
coding using WMMSE-SCA algorithm for a 19-cell network with center 7 cells forming a single cluster
under the fronthaul capacity of 320Mbps per sector.

Figure 4.7: Per-cell sum rate vs. average per-cell fronthaul capacity with either single-user compression
or Wyner-Ziv coding using WMMSE-SCA algorithm for a 19-cell network with center 7 cells forming a
single cluster.

coding outperform the linear receiver and single-user compression respectively. But the performance

improvement of SIC receiver upon linear receiver is much larger than the gain of Wyner-Ziv coding over

single-user compression.

4.6.2 Multi-Cluster Network

The performance of the proposed WMMSE-SCA scheme is further evaluated for a large-scale multicell

network with 65 cells and 10 mobile users randomly located within each cell. The BS to BS distance
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Table 4.2: Multi-Cluster Network Parameters

Cellular Layout Hexagonal
BS-to-BS Distance 200 m
Frequency Reuse 1

Channel Bandwidth 10 MHz
Number of Users per Cell 10

Number of Cells 65
Total Number of Users 650
Max Transmit Power 23 dBm

Antenna Gain 14 dBi
SNR Gap (with coding) 6 dB

Background Noise −169 dBm/Hz
Noise Figure 7 dB

Tx Antenna No. 2
Rx Antenna No. 4

Distance-dependent Path Loss 128.1 + 37.6 log10(d)
Log-normal Shadowing 8 dB standard deviation

Shadow Fading Correlation 0.5
Scheduling Strategy Round-robin

is set to be 200m, each user is equipped with 2 transmit antennas, and each BS is equipped with 4

receive antennas. The channel is assumed to be flat-fading. Round-robin user scheduling is used on a

per-cell basis and system is operated with loading factor 0.5, i.e., in each time slot, BS schedules two

users. Detailed system parameters are outlined in Table 4.2. Two different clustering strategies, i.e.,

disjoint clustering and user-centric clustering, are applied to form clusters within the network. Disjoint

clustering partitions the BSs in the network into nonoverlapping sets of cooperating clusters. In user-

centric clustering, each user chooses a set of nearest BSs to form a cooperation cluster, and cooperating

clusters overlap, which makes the implementation of Wyner-Ziv coding and SIC receiver under fronthaul

capacity constraints of (4.9) more difficult. Therefore, for fair comparison, we only consider here the

case where single-user compression and linear MMSE receiver are employed.

Fig. 4.8 and Fig. 4.9 show the CDF plots of user rates achieved with both disjoint clustering and

user-centric clustering with WMMSE-SCA. It is clear that with optimized beamforming and fronthaul

compression, the user-centric clustering significantly improves over disjoint clustering, and both of these

two schemes improve as the cluster size increases. As the capacity of fronthaul links increases from

120Mbps to 360Mbps, the performance gap between the two clustering schemes becomes larger. Further,

for disjoint clustering, increasing the cluster size from 2 to 6 achieves 60% performance improvement for

the 50-percentile rate. This gain doubles when we further replace disjoint clustering with user-centric

clustering.

Fig. 4.10 plots the average per-cell sum rate as the fronthaul capacity increases. The result again

shows that user-centric clustering achieves significant performance gain over disjoint clustering. When

cluster size increases to 6, to achieve per-cell sum rate of 110Mbps, disjoint clustering needs fronthaul

capacity of 360Mbps, while user-centric needs 220Mbps, which is more than 60% improvement on the

fronthaul requirement.

Finally, the performance of the two different clustering strategies are compared as a function of cluster

size in Fig. 4.11. It is shown that for both disjoint clustering and user-centric clustering, the average per-

cell sum rate increases as either the cluster size or fronthaul capacity increases. As expected, user-centric

clustering always outperforms disjoint clustering. If we compare the performance of disjoint clustering
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Figure 4.8: Cumulative distribution of user rates for the WMMSE-SCA algorithm with single-user com-
pression under the average fronthaul capacity of 120Mbps with either disjoint or user-centric clustering
for a multi-cluster network.

Figure 4.9: Cumulative distribution of user rates for the WMMSE-SCA algorithm with single-user com-
pression under the average fronthaul capacity of 360Mbps with either disjoint or user-centric clustering
for a multi-cluster network.

with fronthaul capacity of 360Mbps with user-centric clustering with fronthaul capacity of 240Mbps,

we see that even with 120Mbps lower fronthaul capacity, user-centric clustering already achieves higher

per-cell sum rate. This improvement on per-cell sum rate becomes larger as the cluster size increases.
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Figure 4.10: Per-cell sum rate vs. average per-cell fronthaul capacity of the WMMSE-SCA algorithm
with single-user compression for a multi-cluster network under different clustering strategies and different
cluster size.

Figure 4.11: Per-cell sum rate vs. cluster size for the WMMSE-SCA algorithm with single-user com-
pression for a multi-cluster network under different clustering strategies and different fronthaul capacity
constraints.

4.7 Summary

This chapter studies the fronthaul compression and transmit beamforming design for an uplink MIMO

C-RAN system. From algorithm design perspective, we propose a novel WMMSE-SCA algorithm to effi-

ciently optimize the transmit beamformer and quantization noise covariance matrix jointly for maximiz-

ing the weighted sum rate with either Wyner-Ziv coding or single-user compression. Further, we propose

a separate design consisting of transmit beamforming optimized for the Gaussian vector multiple-access

channel without accounting for compression together with scalar quantization with uniform quantiza-
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tion noise levels across the antennas at each BS. This low-complexity separate design is shown to be

near optimal for maximizing the weighted sum rate when the SQNR is high. The performance of opti-

mized beamforming and fronthaul compression is evaluated for practical multicell networks with different

compression strategies, different receiving schemes, and different clustering methods. Numerical results

show that, with optimized beamforming and fronthaul compression, C-RAN can significantly improve

the overall performance of MIMO cellular networks. Most of the performance gain are due to the im-

plementation of SIC at the central receiver. Finally, user-centric clustering significantly outperforms

disjoint clustering in terms of fronthaul capacity saving.
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Conclusion

This thesis studies an uplink C-RAN model under a practical implementation constraint of capacity-

limited fronthaul links. From the theoretical analytic point of view, this thesis provides a justification on

the optimality of Gaussian input signals at the user, Gaussian quantization at the BSs, and successive

decoding at the CP for implementing compress-and-forward in uplink C-RAN. Specifically, this thesis

shows that generalized successive decoding achieves the same rate region as joint decoding under a

sum fronthaul capacity constraint and successive decoding of the quantization codewords first, and then

the user message codewords achieves the same maximum sum rate as joint decoding. Furthermore,

it is shown that with Gaussian input distribution, Gaussian quantizer maximizes the achievable rate

region for joint decoding. Additionally, with Gaussian input and Gaussian quantization, by setting

quantization noise levels to be proportional to the background noise levels, successive decoding with

Wyner-Ziv compression can achieve the sum capacity of the uplink C-RAN model to within a constant

gap. A similar constant-gap result is also obtained for the single-user compression under a diagonally

dominant channel condition.

From algorithm design perspective, the thesis first investigates the optimization of fronthaul com-

pression for uplink C-RAN under a sum fronthaul constraint and proposes a novel alternating convex

optimization algorithm for efficiently finding the optimal quantization noise levels that maximizes the

weighted sum rate. The thesis further studies the joint optimization of transmit beamforming and

fronthaul compression for uplink C-RAN under individual fronthaul constraints. We propose the joint

optimization of the transmit beamformers and the quantization noise covariance matrices for maximiz-

ing the network utility and develop a novel WMMSE-SCA algorithm for maximizing the weighted sum

rate under the user transmit power and fronthaul capacity constraints with either Wyner-Ziv coding or

single-user compression. The performance of the proposed schemes are evaluated for practical multicell

and heterogeneous networks. Numerical results show that with optimized beamforming and fronthaul

compression, C-RAN can significantly improve the overall performance of conventional cellular networks.

We finally conclude this thesis by pointing out some possible future research directions. For the

relaying strategies at the BSs, instead of compression, the BSs can also perform decoding and compu-

tation, which result in the partial decode-forward scheme [51] and the compute-and-forward scheme.

In partial decode-forward, user messages are decoded locally at the BSs, which brings low latency but

also poor performance. The tradeoff between latency and performance for partial decode-forward in

C-RAN is an interesting problem for future study. On the other hand, in compute-and-forward each BS

67
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computes a linear combination of message codewords and send it to the CP for decoding. Due to the

fact of no noise accumulation, compute-and-forward can outperform compress-and-forward for the C-

RAN system under certain channel conditions and fronthaul constraints [30]. However, the performance

compute-and-forward could be sensitive to the channel gain matrix. The construction of good codes for

compute-and-forward with competitive performance under arbitrary channel conditions and fronthaul

constraints in uplink C-RAN is still an open problem.

As a counterpart of uplink C-RAN, the downlink of the C-RAN system can thought as a broadcast

relay network, where the CP sends multiple data streams to different user terminals. A number of

pratical coding schemes have been studied for the downlink of C-RAN in the literature, which includes

the message sharing scheme [71], the pure compression scheme [74], and the hybrid scheme [80]. From

information theoretical point of view, the state-of-the-art coding strategy for downlink C-RAN is the

so-called distributed decode-forward [81], which has be shown to achieve the capacity region of Gaussian

broadcast relay networks to within a constant gap. However, to achieve such a constant-gap result,

one needs to employ multiple block coding at the transmitter, which is computationally prohibitive for

practical implementation. Exploring the tradeoff between complexity and performance for downlink

C-RAN is an attractive but challenging problem for future research.
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Appendix A

Optimality of Generalized Successive

Decoding

In this appendix, we prove Theorem 2.1, which states the equivalence between generalized successive

decoding and joint decoding under a sum-capacity fronthaul constraint. We begin by introducing an

outer bound for the achievable rate region of joint decoding under a sum fronthaul constraint. Under

the sum fronthaul capacity constraint, define the rate-fronthaul region for joint decoding Po
JD,s as the

closure of the convex hull of all (R1, R2, . . . , RK , C) satisfying⎧⎪⎪⎨⎪⎪⎩
∑
k∈T

Rk < min

{
C −

∑
�∈L

I
(
Y�; Ŷ�|XK

)
, I

(
XT ; ŶL|XT c

)}
, ∀ T ⊆ K,

C >
∑

�∈L I
(
Y�; Ŷ�|XK

) (A.1)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�). Under fixed sum fronthaul constraint C, define

the region Ro
JD,s as follows

Ro
JD,s =

{
(R1, . . . , RK) : (R1, · · · , RK , C) ∈ Po

JD,s

}
(A.2)

Note that the rate region Ro
JD,s is an outer bound for joint decoding rate region (2.10) because only the

constraints corresponding to S = ∅ and S = L are included. These constraints turn out to be the only

active ones under the sum fronthaul constraint
∑L

�=1 C� ≤ C and C� ≥ 0.

Under the sum fronthaul constraint, the generalized successive decoding region PGSD,s(π) for de-

coding order π can be derived from (2.2) by letting
∑L

�=1C� = C. More specifically, PGSD,s(π) is the

closure of the convex hull of all (R1, R2, . . . , RK , C) satisfying⎧⎪⎪⎨⎪⎪⎩
Rk < I

(
Xk; ŶJXk

|XIXk

)
, ∀ k ∈ K,

C >

L∑
�=1

I
(
Y�; Ŷ�|ŶJY�

,XIY�

)
,

(A.3)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�), where IXk
, IY�

are the indices of user messages

that are decoded before Xk and Y� under the permutation π, and JXk
, JY�

are the indices of quanti-

69
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zation codewords that are decoded before Xk and Y� under decoding order π. Define P∗
GSD,s to be the

closure of the convex hull of all PGSD,s(π)’s over decoding order π’s, i.e. P∗
GSD,s = co

(⋃
π
PGSD,s(π)

)
.

We say a point (R1, . . . , RK , C) is dominated by a point in P∗
GSD,S if there exists some (R′

1, . . . , R
′
K , C′)

in P∗
GSD,s for which Rk ≤ R′

k for k = 1, 2, . . . ,K, and C ≥ C′.

Given the definitions of R∗
GSD,s, R∗

JD,s and Ro
JD,s, it is easy to see that R∗

GSD,s ⊆ R∗
JD,s ⊆ Ro

JD,s.

To show R∗
GSD,s = R∗

JD,s, it suffices to show Ro
JD,s ⊆ R∗

GSD,s, which is equivalent to show that if a

point (R1, R2, . . . , RK , C) ∈ Po
JD,s, then the same point (R1, R2, . . . , RK , C) ∈ P∗

GSD,s also. To show

this, it suffices to show that for any fixed product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�) and fixed C,

each extreme point (R1, . . . , RK , C) as defined by (A.1) is dominated by a point in P∗
GSD,s with the

average sum fronthaul capacity requirement at most C.

To this end, define a set function f : 2K → R as follows:

f (T ) := min

{
C −

∑
�∈L

I(Y�; Ŷ�|XK), I
(
XT ; ŶL|XT c

)}
,

for each T ⊆ K. It can be verified that the function f is a submodular function (Appendix B,

Lemma B.1). By construction, (R1, R2, . . . , RK) as defined by (A.2) satisfies∑
k∈T

Rk ≤ f (T ) ,

which is a submodular polyhedron associated with f .

It follows by basic results in submodular optimization (Appendix B, Proposition B.1) that, for a

linear ordering i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme point of R∗
JD,s can be computed as follows

R̃ij = f ({i1, . . . , ij})− f ({i1, . . . , ij−1}) .

Furthermore, the extreme points of Ro
JD can be enumerated over all the orderings of K. Each ordering of

K is analyzed in the same manner, hence for notational simplicity we only consider the natural ordering

ij = j in the following proof.

By construction,

R̃j = min

{
C −

∑
�∈L

I(Y�; Ŷ�|XK), I
(
Xj

1; ŶL|XK
j+1

)}

−min

{
C −

∑
�∈L

I(Y�; Ŷ�|XK), I
(
Xj−1

1 ; ŶL|XK
j

)}
.

Note that I
(
Xj

1; ŶL|XK
j+1

)
≥ I

(
Xj−1

1 ; ŶL|XK
j

)
. Then, it suffices to check the following two cases:

• Case 1: C −
∑
�∈L

I(Y�; Ŷ�|XK) ≥ I
(
XK; ŶL

)
. In this case the resulting extreme point r1JD =
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(R̃1, R̃2, . . . , R̃K , C) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R̃j = I

(
Xj ; ŶL|XK

j+1

)
, for j = 1, 2, . . . ,K − 1,

R̃K = I
(
XK ; ŶL

)
,

C ≥ I
(
XK; ŶL

)
+

∑
�∈L

I
(
Y�; Ŷ�|XK

)
,

Following the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Yj ↔ Ŷj , ∀ i �= j

it can be shown that ∑
�∈L

I(Y�; Ŷ�|XK) + I
(
XK; ŶL

)
= I(YL; ŶL) ≤ C.

Clearly, r1JD belongs to the polyhedron P∗
GSD,s with successive decoding, since it can be achieved

by the decoding order of ŶL → XK → · · · → X1. Thus, r
1
JD is dominated by a point in P∗

GSD,s.

• Case 2: Consider that

I
(
Xj−1

1 ; ŶL|XK
j

)
≤ C −

∑
�∈L

I(Y�; Ŷ�|XK) ≤ I
(
Xj

1; ŶL|XK
j+1

)

for some 1 ≤ j < K. The resulting extreme point r2JD = (R̃1, R̃2, . . . , R̃K , C) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃i = I
(
Xi; ŶL|XK

i+1

)
, for i < j,

R̃i =

[
C −

∑
�∈L

I(Y�; Ŷ�|XK)− I
(
Xj−1

1 ; ŶL|XK
i

)]+
, for i = j,

R̃i = 0, for i > j,

C ≤ I
(
Xj

1; ŶL|XK
j+1

)
+

∑
�∈L

I(Y�; Ŷ�|XK).

where [·]+ means max{·, 0}. Note that users with index i > j are inactive, and are essentially

removed from the network. Now consider generalized successive decoding with the following two

different decoding orders:

(i) Decoding order 1 satisfies

Xj+1 → . . .→ XK → ŶL → Xj → . . .→ X1.

The resulting extreme point r
(1)
GSD = (R

(1)
1 , . . . , R

(1)
K , C(1)) of P∗

GSD,s satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R

(1)
i = I

(
Xi; ŶL|XK

i+1

)
, for i ≤ j,

R
(1)
i = 0, for i > j,

C(1) = I
(
YL; ŶL|XK

j+1

)
.
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where C(1) represents the required fronthaul capacity in order to achieve the above rate tuple

(R
(1)
1 , . . . , R

(1)
K ) with decoding order 1.

(ii) Decoding order 2 is

Xj → . . .→ XK → ŶL → Xj+1 → . . .→ X1.

The resulting extreme point r
(2)
GSD = (R

(2)
1 , . . . , R

(2)
K , C(2)) of P∗

GSD,s satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R

(2)
i = I

(
Xi; ŶL|XK

i+1

)
, for i < j,

R
(2)
i = 0, for i ≥ j,

C(2) = I
(
YL; ŶL|XK

j

)
.

where C(1) represents the required fronthaul capacity in order to achieve the above rate tu-

ple (R
(2)
1 , . . . , R

(2)
K ) with decoding order 2. Observe that the rate tuples (R

(1)
1 , . . . , R

(1)
K ) and

(R
(2)
1 , . . . , R

(2)
K ) given by above two decoding orders different at only jth component, where R

(1)
j =

I
(
Xj ; ŶL|XK

j+1

)
and R

(2)
j = 0 and R

(1)
i = R

(2)
i = R̃i for all i < j. Now choose a parameter θ

such that

θ =

C −
∑
�∈L

I(Y�; Ŷ�|XK)− I
(
Xj−1

1 ; ŶL|XK
j

)
I
(
Xj ; ŶL|XK

j+1

) . (A.4)

Following the Markov chain XK ↔ YL ↔ ŶL, we have the following identity,

1− θ =
I
(
YL; ŶL|XK

j+1

)
− C

I
(
Xj ; ŶL|XK

j+1

) .

Consider the following point: rθGSD = θr
(1)
GSD+(1−θ)r(2)GSD, which is in P∗

GSD,s. The corresponding

sum fronthaul requirement is given by

θC(1) + (1− θ)C(2) = θI
(
YL; ŶL|XK

j+1

)
+ (1− θ)I

(
YL; ŶL|XK

j

)
= C ·

I
(
YL; ŶL|XK

j+1

)
− I

(
YL; ŶL|XK

j

)
I
(
Xj ; ŶL|XK

j+1

) +
I
(
YL; ŶL|XK

j+1

)
I
(
Xj ; ŶL|XK

j+1

)
×

[
I
(
YL; ŶL|XK

j

)
− I

(
YL; ŶL|XK

1

)
− I

(
Xj−1

1 ; ŶL|XK
j

)]
(c)
= C ·

I
(
YL; ŶL|XK

j+1

)
− I

(
YL; ŶL|XK

j

)
I
(
Xj ; ŶL|XK

j+1

) +
I
(
YL; ŶL|XK

j+1

)
I
(
Xj ; ŶL|XK

j+1

)
×

[
I
(
Xj−1

1 ,YL; ŶL|XK
j

)
− I

(
YL; ŶL|XK

1

)
− I

(
Xj−1

1 ; ŶL|XK
j

)]
(d)

≤ C ·
I
(
Xj ,YL; ŶL|XK

j+1

)
− I

(
YL; ŶL|XK

j

)
I
(
Xj ; ŶL|XK

j+1

)
= C, (A.5)
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where the equality (c) follows from the fact that I
(
Xj−1

1 ,YL; ŶL|XK
j

)
= I

(
YL; ŶL|XK

j

)
due to

Markov chain XK ↔ YL ↔ ŶL, and inequality (d) follows from the fact that I
(
YL; ŶL|XK

j+1

)
≤

I
(
Xj ,YL; ŶL|XK

j+1

)
. Thus, we have that r2JD is dominated by some point lying on line segment

between r
(1)
GSD and r

(2)
GSD, which lies in P∗

GSD,s.

Therefore, for every extreme point (R̃1, . . . , R̃K) of Ro
JD, the point (R̃1, . . . , R̃K , C) lies in P∗

GSD,s.

This completes the proof.
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Submodular Functions

In this appendix, we review some basic results in submodular optimization used proving Theorem 2.1

and Theorem 2.2. We tailor our statements toward submodularity and supermodularity, which are used

in the proofs.

We begin with the definition of submodular function.

Definition B.0.1. Let D = {1, . . . , n} be a finite set. A set function f : 2D → R is submodular if for

all S, T ⊆ D,
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). (B.1)

Definition B.0.2. Let E = {1, . . . ,m} be a finite set. A set function g : 2E → R is supermodular if for

all S, T ⊆ E ,
g(S) + g(T ) ≤ g(S ∪ T ) + g(S ∩ T ). (B.2)

If the function f is submodular, we call a polyhedron defined by

P(f) =
{
(x1, . . . , xn) ∈ R

n :
∑
i∈S

xi ≤ f(S), ∀ S ⊆ D
}

(B.3)

the submodular polyhedron associated with the submodular function f . Similarly, we define the super-

modular polyhedron P(g) to be the set of (x1, . . . , xn) ∈ Rn satisfying∑
i∈T

xi ≥ g(T ), ∀ T ⊆ E . (B.4)

We say a point in P(f) is an extreme point if it cannot be expressed as a convex combination of the

other two points in P(f).
One important property of submodular polyhedron is that all the extreme points can be enumerated

through solving a linear optimization. The following proposition provides an algorithm that enumerates

the extreme points of P(f).

Proposition B.1 ( [82] [83]) For a linear ordering i1 ≺ i2 ≺ · · · ≺ in of the elements in D, Algo-

rithm B.1 returns an extreme point (v1, . . . , vn) of P(f). Moreover, all extreme points of P(f) can be

enumerated by considering all linear orderings of the elements of D.
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Algorithm B.1 Greedy Algorithm for Submodular Polyhedron

1: comment: Returns extreme point (v1, . . . , vn) of P(f) with the ordering ≺.
2: for j = 1, . . . , n do
3: Set vj = f ({i1, i2, . . . , ij})− f ({i1, i2, . . . , ij−1}).
4: end for
5: return (v1, . . . , vn)

Proposition B.1 is the key tool we employ to prove Theorem 2.1 and Theorem 2.2. In order to apply

this proposition, we require the following lemmas,

Lemma B.1 For any joint distribution
∏K

k=1 p (xk)
∏L

�=1 p
(
y�|xK

1

)∏L
�=1 p(ŷ�|y�) and fixed C ∈ R, the

set function f : 2K → R defined as follows

f (T ) := min

{
C −

∑
�∈L

I(Y�; Ŷ�|XK), I
(
XT ; ŶL|XT c

)}

is submodular.

Proof. Define a set function f ′ (T ) = I
(
XT ; ŶL|XT c

)
. By definition, it can be verified that function f ′

is submodular [84]. Under fixed sum fronthaul capacity C and conditional distribution
∏L

�=1 pŶ�|Y�
, the

expression C −
∑

�∈L I(Y�; Ŷ�|XK) is a constant. Let C′ = C −
∑

�∈L I(Y�; Ŷ�|XK). Now the problem

reduces to show that f (T ) = min {C′, f ′ (T )) is submodular.

Next, observe that f ′ is monotonically increasing, i.e. if S ⊂ T , then f ′(S) ≤ f ′(T ). Thus, fixing

S, T ⊆ K, we can assume without loss of generality that

f ′(S ∩ T ) ≤ f ′(S) ≤ f ′(T ) ≤ f ′(S ∪ T )

If C′ ≤ f ′(S∩T ), then f(S) = f(T ) = f(S∩T ) = f(T ) ≤ f ′(S∪T ) = C′. Clearly, f is then submodular.

On the other hand, if C′ ≥ f ′(S ∪ T ), then f(S) = f ′(S), f(T ) = f ′(T ), f(S ∩ T ) = f ′(S ∩ T ), and
f(S ∪ T ) = f ′(S ∪ T ), f is also submodular. Thus, it suffices to check the following three cases:

• Case 1: f ′(S ∩ T ) ≤ C′ ≤ f ′(S) ≤ f ′(T ) ≤ f ′(S ∪ T ).

By definition of function f , we have

f(S) + f(T ) ≥ C′ + f ′(S ∩ T ) = f(S ∪ T ) + f(S ∩ T ).

• Case 2: f ′(S ∩ T ) ≤ f ′(S) ≤ C′ ≤ f ′(T ) ≤ f ′(S ∪ T ).

Since f ′ is monotonically increasing, we have

f(S) + f(T ) = f ′(S) + C′ ≥ f ′(S ∩ T ) + f(S ∪ T )

= f(S ∩ T ) + f(S ∪ T ).

• Case 3: f ′(S ∩ T ) ≤ f ′(S) ≤ f ′(T ) ≤ C′ ≤ f ′(S ∪ T ).
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In this case, the submodularity of f ′ and the fact of f ′ ≤ f imply that

f(S) + f(T ) = f ′(S) + f ′(T ) ≥ f ′(S ∩ T ) + f ′(S ∪ T )

≥ f(S ∩ T ) + f(S ∪ T ).

Hence, f = min{C′, f ′} is submodular, which completes the proof of Lemma B.1.

Lemma B.2 For any joint distribution
∏K

k=1 p (xk)
∏L

�=1 p
(
y�|xK

1

)∏L
�=1 p(ŷ�|y�) and fixed R ∈ R,

define the set function g : 2L → R as:

g (S) := R+
∑
�∈S

I
(
Y�; Ŷ�|XK

)
− I

(
XK; ŶSc

)
,

and the corresponding non-negative set function g+ : 2L → R+ as g+ = max{g, 0}. The functions g and

g+ are supermodular.

Proof. We first prove that the set function g′ (T ) = I
(
XK; ŶT

)
is submodular. To this end, we evaluate

g′ (T ∩ S) + g′ (T ∪ S) = I
(
XK; ŶT ∪S

)
+ I

(
XK; ŶT ∩S

)
= I

(
XK; ŶS , ŶSc∩T

)
+ I

(
XK; ŶT ∩S

)
= g′ (S) + g′ (T ) + I

(
XK; ŶSc∩T |ŶS

)
− I

(
XK; ŶSc∩T |ŶT ∩S

)
Furthermore,

I
(
XK; ŶSc∩T |ŶS

)
− I

(
XK; ŶSc∩T |ŶT ∩S

)
= h

(
ŶSc∩T |ŶS

)
− h

(
ŶSc∩T |ŶS ,XK

)
− h

(
ŶSc∩T |ŶT ∩S

)
+ h

(
ŶSc∩T |ŶT ∩S ,XK

)
= h

(
ŶSc∩T |ŶS

)
− h

(
ŶSc∩T |ŶS∩T

)
≤ 0.

Therefore, g′ (T ∩ S) + g′ (T ∪ S) ≤ g′ (S) + g′ (T ), which proves that g′ is submodular.

In the following, we prove that g is supermodular. Evaluate g(S) + g(T ) as

g(S) + g(T )
= 2R+

∑
�∈S

I
(
Y�; Ŷ�|XK

)
+

∑
�∈T

I
(
Y�; Ŷ�|XK

)
− I

(
XK; ŶSc

)
− I

(
XK; ŶT c

)
(e)

≤ 2R+
∑

�∈S∪T
I
(
Y�; Ŷ�|XK

)
+

∑
�∈S∩T

I
(
Y�; Ŷ�|XK

)
− I

(
XK; Ŷ(S∩T )c

)
− I

(
XK; Ŷ(S∪T )c

)
= g(S ∩ T ) + g(S ∪ T ).

where inequality (e) follows from the fact that g′ (T ) = I
(
XK; ŶT

)
is a submodular function.

Therefore, we show that g is supermodular. Following the result of [53, Lemma 6], it can be shown

that g+ = max{g, 0} is also supermodular.
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Appendix C

Optimality of Successive Decoding

for Maximizing Sum Rate

Similar to the proof of Theorem 2.1, Theorem 2.2 can also be proven using submodular optimization.

In the following, we consider the region (R,C1, . . . , CL), and prove that joint decoding and successive

decoding achieve the same maximum rate using the properties of submodular optimization.

Definition C.0.3. Define Ps
JD to be the closure of the convex hull of all (R,C1, . . . , CL) satisfying

R <
∑
�∈S

[
C� − I

(
Y�; Ŷ�|XK

)]
+ I

(
XK; ŶSc

)
, ∀ S ⊆ L, (C.1)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�).

Definition C.0.4. Define Ps
SD to be the closure of the convex hull all (R,C1, . . . , CL) satisfying⎧⎪⎨⎪⎩

R < I
(
XK; ŶL

)
,∑

�∈S
C� > I

(
YS ; ŶS |ŶSc

)
, ∀ S ⊆ L (C.2)

for some product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�).

Note that Ps
JD represents the sum-rate and fronthaul-capacity region of joint decoding. All the partial

sums over S in (C.1) can be strictly attained with equality depending on the values of the fronthaul

capacities C� for � = 1, . . . , L and the sum rate R. Similarly, Ps
SD corresponds to the region of successive

decoding. For fixed product distribution
∏K

k=1 p (xk)
∏L

�=1 p(ŷ�|y�), we say a point (R,C1, . . . , CL) is

dominated by a point (R′, C′
1, . . . , C

′
L) in Ps

SD if C′
� ≤ C� for � = 1, . . . , L and R′ ≥ R.

Clearly, R∗
JD,SUM ≥ R∗

SD,SUM . To show R∗
JD,SUM = R∗

SD,SUM , it remains to show that R∗
JD,SUM ≤

R∗
SD,SUM . For any given product distribution

∏K
k=1 p (xk)

∏L
�=1 p(ŷ�|y�) and joint decoding sum rate

RJD, define PC ⊂ RL
+ to be the set of (C1, . . . , CL) such that

∑
�∈S

C� ≥
[
RJD +

∑
�∈S

I
(
Y�; Ŷ�|XK

)
− I

(
XK; ŶSc

)]+

, (C.3)

77
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for all S ⊆ L. Now, to show R∗
JD,SUM ≤ R∗

SD,SUM , it suffices to show that each extreme point of PC is

dominated by a point in Ps
SD that achieves a sum rate greater or equal to the joint decoding sum rate

R.

To this end, define a set function g : 2L → R as follows:

g (S) := RJD +
∑
�∈S

I
(
Y�; Ŷ�|XK

)
− I

(
XK; ŶSc

)
,

for each S ⊆ L. It can be verified that the function g+ (S) = max {g (S) , 0} is a supermodular function

(see Appendix B, Lemma B.2). By construction, PC is equal to the set of (C1, R2, . . . , CL) satisfying∑
�∈S

C� ≥ g+ (S) , ∀ S ⊆ L.

Following the results in submodular optimization (Appendix B, Proposition B.1), we have that for a

linear ordering i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme point of PC can be computed as follows

C̃ij = g+ ({i1, . . . , ij})− g+ ({i1, . . . , ij−1}) .

All the L! extreme points of PC can be analyzed in the same manner. For notational simplicity we only

consider the natural ordering ij = j in the following proof.

By construction,

C̃j =

[
RJD +

j∑
�=1

I
(
Y�; Ŷ�|XK

)
− I

(
XK; Ŷ

L
j+1

)]+

−
[
RJD +

j−1∑
�=1

I
(
Y�; Ŷ�|XK

)
− I

(
XK; Ŷ

L
j

)]+

.

Let j be the first index for which g ({1, . . . , j}) > 0. Then, by construction,

C̃k = I
(
XK; Ŷk|ŶL

k+1

)
+ I

(
Yk; Ŷk|XK

)
= I

(
Yk; Ŷk|ŶL

k+1

)
for all k > j, where the Markov chain Ŷi ↔ Yi ↔ XK ↔ Yj ↔ Ŷj , for i �= j, is utilized in deriving the

second equality. Clearly, all the C̃k’s are in the successive decoding region Ps
SD .

Moreover, we have g ({1, . . . , j′}) ≤ 0 for all j′ < j. Thus, C̃j can be expressed as

C̃j = RJD +

j∑
�=1

I
(
Y�; Ŷ�|XK

)
− I

(
XK; Ŷ

L
j+1

)
= αI

(
Yj+1; Ŷj+1|ŶL

j+1

)
where α ∈ [0, 1] is defined as

α =

RJD +
j∑

�=1

I
(
Y�; Ŷ�|XK

)
− I

(
XK; Ŷ

L
j+1

)
I
(
Yj+1; Ŷj+1|ŶL

j+1

) .

Consider the two following successive decoding schemes:

• Scheme 1: The CP decodes quantization codewords Ŷj+1, . . . , ŶL first, then decodes the message
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codewords XK sequentially. Note that the BSs with index i ≤ j are inactive, and are essentially

removed from the network. The resulting extreme point c(1) = (R
(1)
SD, C

(1)
1 , . . . , C

(1)
L ) of Ps

SD

satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

(1)
i = 0, for i ≤ j,

C
(1)
i = I

(
Yi; Ŷi|ŶL

i+1

)
for i > j,

R
(1)
SD = I

(
XK; Ŷ

L
j+1

)
.

• Scheme 2: The CP decodes quantization codewords Ŷj , . . . , ŶL first, then decodes the message

codewords XK sequentially. Note that in this scheme, the BSs with index i < j are inactive, and

are essentially removed from the network. The resulting extreme point c(2) = (R
(2)
SD, C

(2)
1 , . . . , C

(2)
L )

of Ps
SD satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
(2)
i = 0, for i < j,

C
(2)
i = I

(
Yi; Ŷi|ŶL

i+1

)
for i ≥ j,

R
(2)
SD = I

(
XK; Ŷ

L
j

)
.

Since C� is defined to be the maximum long-term average throughput of fronthaul link �, the following

point: cα = (1− α)c(1) + αc(2) lies in Ps
SD. The corresponding sum rate RSD in cα is given by

(1− α)R
(1)
SD + αR

(2)
SD = (1− α)I

(
XK; Ŷ

L
j+1

)
+ αI

(
XK; Ŷ

L
j

)
(f)
=

I
(
XK; Ŷ

L
j

)
−RJD −

j−1∑
�=1

I
(
Y�; Ŷ�|XK

)
I
(
Yj+1; Ŷj+1|ŶL

j+1

) · I
(
XK; Ŷ

L
j+1

)

+

RJD +
j∑

�=1

I
(
Y�; Ŷ�|XK

)
− I

(
XK; Ŷ

L
j+1

)
I
(
Yj+1; Ŷj+1|ŶL

j+1

) · I
(
XK; Ŷ

L
j

)

≥
RJD ·

[
I
(
XK; Ŷ

L
j

)
− I

(
XK; Ŷ

L
j+1

)]
+ I

(
Yj ; Ŷj |XK

)
· I

(
XK; Ŷ

L
j

)
I
(
Yj+1; Ŷj+1|ŶL

j+1

)
(g)

≥ RJD ·
I
(
XK; Ŷ

L
j

)
− I

(
XK; Ŷ

L
j+1

)
+ I

(
Yj ; Ŷj |XK

)
I
(
Yj+1; Ŷj+1|ŶL

j+1

)
= RJD, (C.4)

where the equality (f) follows from the fact that I
(
XK,Yj+1; Ŷj+1|ŶL

j+1

)
= I

(
Yj+1; Ŷj+1|ŶL

j+1

)
,

and inequality (g) follows from the fact that RJD ≤ I
(
XK; Ŷ

L
j

)
.

Therefore, for every extreme point (C̃1, . . . , C̃L) of PC , the point (RJD, C̃1, . . . , C̃L) is dominated by

a point in Ps
SD. This proves Theorem 2.2.
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Appendix D

Constant-gap Result for

Compress-and-Forward with Joint

Decoding

The idea of the proof is to compare the achievable rate of compress-and-forward with joint decoding

with the following cut-set upper bound [41]

∑
k∈T

Rk ≤ min

⎧⎨⎩∑
�∈S

C� + log

∣∣∣∑�∈Sc H
†
�,T Σ

−1
� H�,T +K−1

T

∣∣∣∣∣K−1
T

∣∣
⎫⎬⎭ (D.1)

for all ∅ ⊂ T ⊆ K and S ⊆ L. In the expression of cut-set bound, the first term represents the cut across

the fronthaul links in set S, and the second term represents the cut from the users to the BSs in set Sc.

Recall that the rate region for joint decoding (2.19) under Gaussian quantization is the of (R1, · · · , RK)

such that ∑
k∈T

Rk <
∑
�∈S

[
C� − log

|Σ−1
� |

|Σ−1
� −B�|

]
+ log

∣∣∣∑�∈Sc H
†
�,T B�H�,T +K−1

T

∣∣∣∣∣K−1
T

∣∣
for all ∅ ⊂ T ⊆ K and S ⊆ L, for some 0 � B� � Σ−1

� . We now show that if a rate tuple (R1, · · · , RK)

is within the cut-set bound, then (R1− η, · · · , RK − η) is in the achievable rate region of joint decoding,

where

|T |η ≤
∑
�∈S

log
|Σ−1

� |
|Σ−1

� −B�|
+ log

∣∣∣∑�∈Sc H
†
�,T Σ

−1
� H�,T +K−1

T

∣∣∣∣∣∣∑�∈Sc H
†
�,T B�H�,T +K−1

T

∣∣∣
is the gap between the cut-set bound and achievable rate of joint decoding.

Choose quantization noise level to be at the background noise level, i.e. Q� = Σ�. Then we have

B� = (Σ� +Q�)
−1 =

1

2
Σ−1

� .

80
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Evaluate gap η with the above choice of B� gives

η ≤ |S||T | ·N +M ≤ NL+M,

which completes the proof of Proposition 2.3.
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Appendix E

Constant-gap Result for the

VMAC-WZ scheme

The idea is to choose qi = ασ2
i , i = 1, 2, . . . , L where α > 0 is an appropriately chosen constant, then

compare the achievable rate of VMAC-WZ with the following cut-set like sum-capacity upper bound [13]

C̄ = min

⎧⎨⎩log

∣∣∣HLKLH
†
L + diag(σ2

i )
∣∣∣

|diag(σ2
i )|

, C

⎫⎬⎭ (E.1)

where the first term is the cut from the users to the BSs, and the second term is the cut across the

fronthaul links.

We choose the quantization level α depending on C as follows: When C ≥ log
|HLKLH†

L+2diag(σ2
i )|

|diag(σ2
i )| ,

we choose α = 1, i.e., the quantization noise levels are set to be at the background noise levels. Since

α = 1, it can be verified that

I(Y; Ŷ) = log

∣∣∣HLKLH
†
L + 2diag(σ2

i )
∣∣∣

|diag(σ2
i )|

. (E.2)

Thus, we have C ≥ I(Y; Ŷ). This implies that the sum fronthaul constraint (3.2) is satisfied. Therefore,

the sum rate

Rsum = I(X; Ŷ) = log

∣∣∣HLKLH
†
L + 2diag(σ2

i )
∣∣∣

|2diag(σ2
i )|

(E.3)

is achievable. In this case, the gap between C̄ and Rsum can be bounded by

C̄ −Rsum ≤ log

∣∣∣HLKLH
†
L + diag(σ2

i )
∣∣∣

|diag(σ2
i )|

− log

∣∣∣HLKLH
†
L + 2diag(σ2

i )
∣∣∣

|2diag(σ2
i )|

< L.

When C < log
|HLKLH†

L+2diag(σ2
i )|

|diag(σ2
i )| , we choose α so that I(Y; Ŷ) = C. First, note that for such a

82
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choice of α the sum rate Rsum = I(X; Ŷ) is achievable. Next, observe that

I(Y; Ŷ) = log

∣∣∣HLKLH
†
L + diag(σ2

i ) + αdiag(σ2
i )

∣∣∣
|αdiag(σ2

i )|
(E.4)

is a monotonically decreasing function of α. Since C = I(Y; Ŷ) < log
|HLKLH†

L+2diag(σ2
i )|

|diag(σ2
i )|

, we have

α > 1. Now, we use C = I(Y; Ŷ) as an upper bound. The gap between C̄ and Rsum can now be

bounded by

C̄ −Rsum ≤ I(Y; Ŷ)− I(X; Ŷ)

= log

∣∣∣HLKLH
†
L + (1 + α)diag(σ2

i )
∣∣∣

|αdiag(σ2
i )|

− log

∣∣∣HLKLH
†
L + (1 + α)diag(σ2

i )
∣∣∣

|(1 + α)diag(σ2
i )|

= L log

(
1 +

1

α

)
< L

where the last inequality follows from the fact that α > 1.

Combining the two cases, we see that the gap to the sum capacity for the VMAC-WZ scheme with

appropriately chosen quantization noise levels (which are proportional to the background noise levels)

is always less than 1 bit per user per channel use.
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Constant-gap Result for the

VMAC-SU scheme

Lemma F.1 For fixed κ > 1, suppose that a n× n matrix Ψ is κ-strictly diagonally dominant, then

|Ψ| ≥
(
1− 1

κ

)n n∏
i=1

|Ψ(i, i)|. (F.1)

Proof. The proof follows from the lower bound given in [85], which shows that if Ψ is strictly diagonally

dominant, i.e. |Ψ(i, i)| >
n∑

j �=i

|Ψ(i, j)| for i = 1, . . . , n, then the determinant of Ψ can be bounded from

below as follows,

|Ψ| ≥
n∏

i=1

⎛⎝|Ψ(i, i)| −
n∑

j �=i

|Ψ(i, j)|

⎞⎠ . (F.2)

Under the condition that Ψ is κ-strictly diagonally dominant, i.e.
∑n

j �=i |Ψ(i, j)| ≤ |Ψ(i,i)|
κ we further

bound |Ψ| by

|Ψ| ≥
n∏

i=1

(
|Ψ(i, i)| − |Ψ(i, i)|

κ

)
=

(
1− 1

κ

)n n∏
i=1

|Ψ(i, i)|,

which completes the proof.

We now prove Theorem 3.3. The proof uses the same technique as in that of Theorem 3.2. We first

choose the quantization noise levels qi = ασ2
i , i = 1, 2, . . . , L, where α > 0 is a constant depending

on C, then compare the achievable rate of the VMAC-SU scheme with the following cut-set like upper

bound [13]

C̄ = min

⎧⎨⎩log

∣∣∣HLKLH
†
L + diag(σ2

i )
∣∣∣

|diag(σ2
i )|

, C

⎫⎬⎭ . (F.3)

We consider two different cases as follows: when C ≥ log
|diag(HLKLH†

L)+2diag(σ2
i )|

|diag(σ2
i )| , i.e. the sum

fronthaul capacity is large enough to support the choice of qi = σ2
i , we choose α = 1. In this case, the

84
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gap between C̄ and Rsum can be bounded by

C̄ −Rsum ≤ log

∣∣∣HLKLH
†
L + diag(σ2

i )
∣∣∣

|diag(σ2
i )|

− log

∣∣∣HLKLH
†
L + 2diag(σ2

i )
∣∣∣

|2diag(σ2
i )|

< L.

When C < log
|diag(HLKLH†

L)+2diag(σ2
i )|

|diag(σ2
i )|

, we choose α so that
∑L

i=1 I(Yi; Ŷi) = C. First, notice that

L∑
i=1

I(Yi; Ŷi) = log

∣∣∣diag(
HLKLH

†
L

)
+ (1 + α)diag(σ2

i )
∣∣∣

|αdiag(σ2
i )|

is a monotonically decreasing function of α. Since C =
∑L

i=1 I(Yi; Ŷi) < log
|diag(HLKLH†

L)+2diag(σ2
i )|

|diag(σ2
i )| ,

we have α > 1. Now, we use C =
∑L

i=1 I(Yi; Ŷi) as an upper bound. Let Ψ = HKXHHHLKLH
†
L +

(1 + α)diag(σ2
i ) and note that Ψ(i, i) ≥ 0. The gap between C̄ and Rsum is bounded by

C̄ −Rsum ≤
L∑

i=1

I(Yi; Ŷi)− I(X; Ŷ)

= log

∣∣∣diag(
HLKLH

†
L

)
+ (1 + α)diag(σ2

i )
∣∣∣

|αdiag(σ2
i )|

− log

∣∣∣HLKLH
†
L + (1 + α)diag(σ2

i )
∣∣∣

|(1 + α)diag(σ2
i )|

= log

⎡⎢⎢⎣(
1 +

1

α

)L

L∏
i=1

Ψ(i, i)

|Ψ|

⎤⎥⎥⎦ .

Since matrix HLKLH
†
L + diag(σ2

i ) is κ-strictly diagonally dominant, Ψ is also κ-strictly diagonally

dominant. Following the result of Lemma F.1, we further bound the gap as follows,

C̄ −Rsum ≤ L log

(
1 +

1

α

)
+

L∑
i=1

log
κ

κ− 1

< L

(
1 + log

κ

κ− 1

)
,

where the last inequality follows from the fact that α > 1.

Combining the two cases, we see that the gap to sum capacity for the VMAC-SU scheme with

quantization noise levels proportional to the background noise levels is always less than 1 + log κ
κ−1 per

user per channel use.
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Appendix G

Convergence of WMMSE-SCA

Algorithm

In this appendix, we provide the convergence proof of WMMSE-SCA algorithm. The proof is a direct

application of the convergence result of the successive convex approximation algorithm [77]. Let V =

diag
(
{Vk}Kk=1

)
. Define the objective function and fronthaul constraints in problem (4.10) to be

f(V,Q) =
K∑

k=1

αk log
∣∣∣I+V†

kH
†
L,kD

−1
k HL,kVk

∣∣∣ ,
g�(V,Q) = log

∣∣∣∑K
k=1 H�,kVkV

†
kH

†
�,k +Σ� +Q�

∣∣∣
|Q�|

− C�,

where Dk =
∑K

j �=k HL,jVjV
†
jH

†
L,j+Σ+Q for the linear receiver orDk =

∑K
j>k HL,jVjV

†
jH

†
L,j+Σ+Q

for the SIC receiver.

At the tth iteration, assume that the output of WMMSE-SCA algorithm is (Vt,Qt). Putting (Vt,Qt)

into equations (4.13) and (4.17) gives

Γt
� =

K∑
k=1

H�,kV
t
k(V

t
k)

†H†
�,k +Σ� +Qt

�,

Wt
k = I+H†

L,k(V
t
k)

†Ut
k,

where

Ut
k =

⎛⎝∑
j �=k

HL,jV
t
j(V

t
j)

†H†
L,j +Σ+Qt

⎞⎠−1

HL,kV
t
k.

Then the objective function and fronthaul constraints in problem (4.19) can be written as

f̃({V,Q}, {Vt,Qt}) =
K∑

k=1

αk

(
log |Wt

k| − Tr
(
Wt

kEk

))
+ ρ

L∑
�=1

∥∥Γt
� −Ω�

∥∥2

F
,

g̃�({V,Q}, {Vt,Qt}) = log
∣∣Γt

�

∣∣+Tr
(
(Γt

�)
−1Ω�

)
− log |Q�| − C� −N,
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where

Ek =
(
I− (Ut

k)
†HL,kVk

) (
I− (Ut

k)
†HL,kVk

)†
+ (Ut

k)
†

⎛⎝ K∑
j �=k

HL,jVjV
†
jH

†
L,j +Σ+Q

⎞⎠Ut
k,

and Ω� =
∑K

k=1 H�,kVkV
†
kH

†
�,k +Σ� +Q�.

We now observe that the WMMSE-SCA algorithm is actually a special case of the general successive

convex approximation (SCA) method, with f̃ and g̃� being the convex approximation functions of f and

g� respectively. Furthermore, it is easy to verify that f̃ is strictly convex over (V,Q). Following the

result of [86, Lemma 3.1], it can be shown that f̃ is uniformly strongly convex over (V,Q). Applying the

convergence result of the SCA algorithm [77, Theorem 2], we prove that each of the limit points generated

by the proposed WMMSE-SCA algorithm is a stationary point of problem (4.10). This completes the

proof of Theorem 4.1.
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